設(shè)a,b,c滿足abc≠0,a+b=c,則
b2+c2-a2
2bc
+
a2+b2-c2
2ab
的值為( 。
A、0B、1C、2D、-2
分析:把已知的式子變形得到a-c=-b,c-b=a,然后把所求式子第一項的分子一三項結(jié)合,利用平方差公式分解因式后,把a+b=c代入,然后分子分母約分后,再變形,把a-c=-b代入即可求出值;第二項的分子一三項結(jié)合,利用平方差公式分解因式,把a-c=-b代入,約分后再變形,把c-b=a代入即可求出值,求出兩式之和即可得到原式的值.
解答:解:∵a+b=c,
∴a-c=-b,c-b=a,
b2+c2-a2
2bc
+
a2+b2-c2
2ab

=
b2-a2+c2
2bc
+
a2-c2+b2
2ab

=
(b+a)(b-a)+c2
2bc
+
(a+c)(a-c)+b2
2ab

=
c(b-a)+c2
2bc
+
-b(a+c)+b2
2ab

=
b-a+c
2b
+
-a-c+b
2a

=
b-(a-c)
2b
+
-a-(c-b)
2a

=
b-(-b)
2b
+
-a-a
2a

=1+(-1)=0.
故選A.
點評:此題考查了分式的化簡求值,要求學(xué)生熟練掌握平方差公式,多次利用整體代換的思想來求解,熟練掌握平方差公式及整體代入的思想是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、設(shè)a是一個無理數(shù),且a、b滿足ab+a-b=1,則b=
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,圓內(nèi)接六邊形ABCDEF滿足AB=CD=EF,且對角線AD、BE、CF相交于一點Q,設(shè)AD與CF的交點為P.
求證:(1)
QD
ED
=
AC
EC
;(2)
CP
PE
=
AC2
CE2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,一副直角三角板滿足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:將三角板DEF的直角頂點E放置于三角板ABC的斜邊AC上,再將三角板DEF繞點E旋轉(zhuǎn),并使邊DE與邊AB交于點P,邊EF與邊BC于點Q.
探究一:在旋轉(zhuǎn)過程中,
(1)如圖2,當(dāng)
CE
EA
=1
時,EP與EQ滿足怎樣的數(shù)量關(guān)系?并給出證明;
(2)如圖3,當(dāng)
CE
EA
=2
時,EP與EQ滿足怎樣的數(shù)量關(guān)系?并說明理由;
(3)根據(jù)你對(1)、(2)的探究結(jié)果,試寫出當(dāng)
CE
EA
=m
時,EP與EQ滿足的數(shù)量關(guān)系式為
 
,其中m的取值范圍是
 
.(直接寫出結(jié)論,不必證明)
探究二:若
CE
EA
=2
且AC=30cm,連接PQ,設(shè)△EPQ的面積為S(cm2),在旋轉(zhuǎn)過程中:
(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.
(2)隨著S取不同的值,對應(yīng)△EPQ的個數(shù)有哪些變化,求出相應(yīng)S的值或取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)⊙O的內(nèi)接三角形ABC滿足AB=2,∠C=30°,則⊙O的內(nèi)接正方形的面積等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•永春縣質(zhì)檢)如圖,在矩形OABC中,點A、C的坐標(biāo)分別是(a,0),(0,
3
),點D是線段BC上的動點(與B、C不重合),過點D作直線l:y=-
3
x+b
交線段OA于點E.
(1)直接寫出矩形OABC的面積(用含a的代數(shù)式表示);
(2)已知a=3,當(dāng)直線l將矩形OABC分成周長相等的兩部分時
①求b的值;
②梯形ABDE的內(nèi)部有一點P,當(dāng)⊙P與AB、AE、ED都相切時,求⊙P的半徑.
(3)已知a=5,若矩形OABC關(guān)于直線DE的對稱圖形為四邊形O1A1B1C1,設(shè)CD=k,當(dāng)k滿足什么條件時,使矩形OABC和四邊形O1A1B1C1的重疊部分的面積為定值,并求出該定值.

查看答案和解析>>

同步練習(xí)冊答案