【題目】解方程:
(1);
(2)甲、乙兩公司為“見義勇為基金會”各捐款3000元.已知甲公司的人數(shù)比乙公司的人數(shù)多20%,乙公司比甲公司人均多捐20元.求甲、乙兩公司各有多少人?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,過對角線BD的中點O的直線分別交AB、CD于點E、F,連接DE,BF.
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個用硬紙板制作的長方體包裝盒展開圖,已知它的底面形狀是正方形,高為12cm.
(1)制作這樣的包裝盒需要多少平方厘米的硬紙板?
(2)若1平方米硬紙板價格為5元,則制作10個這的包裝盒需花費多少錢?(不考慮邊角損耗)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】整數(shù)在數(shù)軸上的位置如圖所示,已知的絕對值是的絕對值的3倍,則此數(shù)軸的原點是圖中的點________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地的一種綠色蔬菜,在市場上若直接銷售,每噸利潤為1000元,經(jīng)粗加工后銷售,每噸利潤4000元,經(jīng)精加工后銷售, 每噸利潤為7000元.當?shù)匾患夜粳F(xiàn)有這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可加工16噸, 如果對蔬菜進行精加工,每天可加工6噸,但每天兩種方式不能同時進行.受季節(jié)等條件的限制,必須用15天時間將這批蔬菜全部銷售或加工完畢.為此,公司研制了三種方案:
方案1:將蔬菜全部進行粗加工;
方案2:盡可能地對蔬菜進行精加工,沒來得及加工的蔬菜,在市場上直接出售;
方案3:將一部分蔬菜進行精加工, 其余蔬菜進行粗加工,并剛好15天完成.
如果你是公司經(jīng)理,你會選擇哪一種方案? 請通過計算說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某報社為了解讀者對本社一種報紙四個版面的喜愛情況,對讀者作了一次問卷調(diào)查,要求讀者選出最喜歡的一個版面,將所得數(shù)據(jù)整理繪制成了如下的條形統(tǒng)計圖:
(1)請寫出從條形統(tǒng)計圖中獲得的一條信息;
(2)請根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)補全扇形統(tǒng)計圖(要求:第二版與批三版相鄰),并說明這兩幅統(tǒng)計圖各有什么特點?
(3)請你根據(jù)上述數(shù)據(jù),對該報社提出一條合理的建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若拋物線L2:y=mx2+nx(m≠0)與拋物線L1:y=ax2+bx(a≠0)的開口大小相同,方向相反,且拋物線L2經(jīng)過L1的頂點,我們稱拋物線L2為L1的“友好拋物線”.
(1)若L1的表達式為y=x2﹣2x,求L1的“友好拋物線”的表達式;
(2)已知拋物線L2:y=mx2+nx為L1:y=ax2+bx的“友好拋物線”.求證:拋物線L1也是L2的“友好拋物線”;
(3)平面上有點P(1,0),Q(3,0),拋物線L2:y=mx2+nx為L1:y=ax2的“友好拋物線”,且拋物線L2的頂點在第一象限,縱坐標為2,當拋物線L2與線段PQ沒有公共點時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:矩形ABCD中,AB=4,BC=3,點M、N分別在邊AB、CD上,直線MN交矩形對角線 AC于點E,將△AME沿直線MN翻折,點A落在點P處,且點P在射線CB上.
(1)如圖1,當EP⊥BC時,求CN的長;
(2) 如圖2,當EP⊥AC時,求AM的長;
(3) 請寫出線段CP的長的取值范圍,及當CP的長最大時MN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com