【題目】八年級(jí)(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請(qǐng)了部分同學(xué)參與問卷調(diào)查,統(tǒng)計(jì)同學(xué)們一個(gè)月閱讀課外書的數(shù)量,并繪制了如下的統(tǒng)計(jì)圖1和圖2,請(qǐng)根據(jù)圖中相關(guān)信息,解決下列問題:

(Ⅰ)圖1的值為____________,共有____________名同學(xué)參與問卷調(diào)查;

(Ⅱ)求統(tǒng)計(jì)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)全校共有學(xué)生1500人,根據(jù)樣本數(shù)據(jù),估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為多少?

【答案】(Ⅰ)41100;(Ⅱ)平均數(shù)是2.54, 眾數(shù)為2,中位數(shù)為2;(Ⅲ)估計(jì)這1500名學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為:

【解析】

1)用1減去1本,3本,4本所占的比例減去即可;用閱讀一本書的人數(shù)除以它占的比例即可求出總數(shù).

2)平均數(shù)=,閱讀課外書的本書的人數(shù)的本書即為眾數(shù),將涉及到的本書從小到大排列最中間的就是中位數(shù);

3)用總?cè)藬?shù)乘以樣本中閱讀2本課外書人數(shù)所占百分比可得

(Ⅰ)∵m%=1-15%-10%-34%=41%,

m=41;

10÷10%=100

∴總?cè)藬?shù)是100人;

(Ⅱ)∵,

∴這組數(shù)據(jù)的平均數(shù)是2.54.

∵在這組數(shù)據(jù)中,2出現(xiàn)了41次,出現(xiàn)的次數(shù)最多,

∴這組數(shù)據(jù)的眾數(shù)為2.

∵將這組數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個(gè)數(shù)都是2,有,

∴這組數(shù)據(jù)的中位數(shù)為2.

(Ⅲ)估計(jì)這1500名學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為:

(本).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yy在第一象限內(nèi)的圖象如圖,點(diǎn)Py的圖象上一動(dòng)點(diǎn),PCx軸于點(diǎn)C,交y的圖象于點(diǎn)B.給出如下結(jié)論:①△ODBOCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積大小不會(huì)發(fā)生變化;④CAAP.其中所有正確結(jié)論的序號(hào)是(  )

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與應(yīng)用:同學(xué)們,你們已經(jīng)知道,即.所以(當(dāng)且僅當(dāng)時(shí)取等號(hào)).

閱讀1:若為實(shí)數(shù),且(當(dāng)且僅當(dāng)時(shí)取等號(hào)).

閱讀2:若函數(shù),為常數(shù)).由閱讀1結(jié)論可知:,∴當(dāng)時(shí),函數(shù)的最小值為

閱讀理解上述內(nèi)容,解答下列問題:

問題1:若函數(shù),則= 時(shí),函數(shù)的最小值為

問題2:已知一個(gè)矩形的面積為4,其中一邊長(zhǎng)為,則另一邊長(zhǎng)為,周長(zhǎng)為,求當(dāng) 時(shí),矩形周長(zhǎng)的最小值為

問題3:求代數(shù)式的最小值.

問題4:建造一個(gè)容積為8立方米,深2米的長(zhǎng)方體無蓋水池,池底和池壁的造價(jià)分別為每平方米元和80元,設(shè)池長(zhǎng)為米,水池總造價(jià)為(元),求當(dāng)為多少時(shí),水池總造價(jià)最低?最低是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,已知AB6,BE平分∠ABCAD邊于點(diǎn)E,點(diǎn)EAD分為13兩部分,則AD的長(zhǎng)為( 。

A. 824B. 8C. 24D. 924

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形是平行四邊形,點(diǎn)軸上,且為坐標(biāo)原點(diǎn),點(diǎn),和點(diǎn),連接并延長(zhǎng)交軸于點(diǎn)

(1)求直線的解析式;

(2)若點(diǎn)出發(fā)以2個(gè)單位/秒的速度沿軸向右運(yùn)動(dòng),同時(shí)點(diǎn)出發(fā),以1個(gè)單位/秒的速度沿軸向左運(yùn)動(dòng),過點(diǎn),分別作軸的垂線交射線和射線分別于點(diǎn),請(qǐng)猜想四邊形的形狀,(點(diǎn),重合除外),并證明你的結(jié)論.

(3)(2)的條件下,當(dāng)點(diǎn)運(yùn)動(dòng)多少秒時(shí),四邊形是正方形?直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為原點(diǎn),拋物線經(jīng)過點(diǎn),對(duì)稱軸為直線,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn).過點(diǎn)作直線軸,交軸于點(diǎn).

(Ⅰ)求該拋物線的解析式及對(duì)稱軸;

(Ⅱ)點(diǎn)軸上,當(dāng)的值最小時(shí),求點(diǎn)的坐標(biāo);

(Ⅲ)拋物線上是否存在點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推動(dòng)陽(yáng)光體育運(yùn)動(dòng)的廣泛開展,引導(dǎo)學(xué)生走向操場(chǎng)、走進(jìn)大自然、走到陽(yáng)光下,積極參加體育鍛煉,學(xué)校準(zhǔn)備購(gòu)買一批運(yùn)動(dòng)鞋供學(xué)生借用.現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制出如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為________,圖①中的值為________;

(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購(gòu)買150雙運(yùn)動(dòng)鞋,建議購(gòu)買35號(hào)運(yùn)動(dòng)鞋多少雙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】表示以為自變量的函數(shù),則表示當(dāng)時(shí)函數(shù)的值.例如,一次函數(shù)記作,當(dāng)時(shí),函數(shù)值.現(xiàn)給出新定義:對(duì)于函數(shù),若存在實(shí)數(shù),使得成立,則稱點(diǎn)是函數(shù)奇妙點(diǎn)

1)求函數(shù)奇妙點(diǎn)

2)當(dāng)為何值時(shí),函數(shù)存在奇妙點(diǎn)?

3)若二次函數(shù)有且只有一個(gè)奇妙點(diǎn),其圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),軸上一動(dòng)點(diǎn).當(dāng)的周長(zhǎng)最短時(shí),求點(diǎn)的坐標(biāo)及的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知A(4,4),B(-1,1),EF=1,線段EFx軸上平移,當(dāng)四邊形ABEF的周長(zhǎng)最小時(shí),點(diǎn)E坐標(biāo)是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案