如圖,直線AB與坐標軸分別交于點A、點B,且OA、OB的長分別為方程x2-6x+8=0的兩個根(OA<OB),點C在y軸上,且OA︰AC=2︰5,直線CD垂直于直線AB于點P,交x軸于點D.
(1)求出點A、點B的坐標.
(2)請求出直線CD的解析式.
(3)若點M為坐標平面內任意一點,在坐標平面內是否存在這樣的點M,使以點B、P、D、M為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
(1)A(0,2),B(-4,0);(2)直線CD的解析式:yCD=-2x+7;(3)存在,P1(-5.5 , 3),P2(9.5 , 3),P3(-2.5 , -3).
解析試題分析:(1)根據一元二次方程的解法得出OA=2,OB=4,即可得出的A,B的坐標;
(2)首先利用角之間的關系得出△BOA∽△COD,即可得出D點的坐標,再利用待定系數(shù)法求一次函數(shù)解析式;
(3)先求出P點坐標(2,3),再根據平行四邊形的性質,當PM=BD,M可在第一象限或第二象限,以及BM=PD時M在第三象限分別分析直接得出答案.
試題解析:(1)∵
∴
∵OA、OB為方程的兩個根,且OA<OB
∴OA=2,OB=4,
∴ A(0,2),B(-4,0),
(2)∵OA:AC=2:5
∴ AC=5
∴OC=OA+AC=2+5=7
∴ C(0,7),
∵∠BAO=∠CAP,∠CPB=∠BOA=90O
∴∠PBD=∠OCD
∵∠ BOA=∠COD=90O
∴△BOA∽△COD
∴=
∴ OD===,
∴D(,0)
設直線CD的解析式為
把x=0,y=7;x=,y=0分別代入得:
∴,
∴yCD=-2x+7,
(3)存在,P1(-5.5,3),P2(9.5,3),P3(-2.5,-3).
考點:一次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:解答題
如圖,A(1,0),B(4,0),M(5,3).動點P從點A出發(fā),沿x軸以每秒1個單位長的速度向右移動,且過點P的直線l:y=-x+b也隨之移動.設移動時間為t秒.
(1)當t=1時,求l的解析式;
(2)若l與線段BM有公共點,確定t的取值范圍;
(3)直接寫出t為何值時,點M關于l的對稱點落在y軸上.如不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知反比例函數(shù)y=(k為常數(shù),k≠1)
(1)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(2)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖:一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(-2,6)和點B(4,n)
(1)求反比例函數(shù)的解析式和B點坐標
(2)根據圖象回答,在什么范圍時,一次函數(shù)的值大于反比例函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某文具店準備購進甲,乙兩種鋼筆,若購進甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購進甲種鋼筆50支,乙種鋼筆30支,需要550元.
(1)求購進甲,乙兩種鋼筆每支各需多少元?
(2)若該文具店準備拿出1000元全部用來購進這兩種鋼筆,考慮顧客需求,要求購進甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進貨方案?
(3)若該文具店銷售每支甲種鋼筆可獲利潤2元,銷售每支乙種鋼筆可獲利潤3元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知與是反比例函數(shù)圖象上的兩個點.
(1)求m和k的值
(2)若點C(-1,0),連結AC,BC,求△ABC的面積
(3)根據圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,四邊形OABC是矩形,點A、C的坐標分別為(3,0)、(0,1),點D是線段BC上的動點(與端點B、C不重合),過點D作直線交折線OAB于點E.
(1)記的面積為S,求S與b的函數(shù)關系式;
(2)當點E在線段OA上時,若矩形OABC關于直線DE的對稱圖形為四邊形,DE=,試探究四邊形與矩形OABC的重疊部分的面積是否發(fā)生變化,若不變,求出該重疊部分的面積;若改變,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,)兩點.
(1)求m、k、b的值;
(2)連接OA、OB,計算三角形OAB的面積;
(3)結合圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
國家推行“節(jié)能減排,低碳經濟”的政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費為b元.據市場調查知:每輛車改裝前、后的燃料費(含改裝費)、(單位:元)與正常運營時間(單位:天)之間分別滿足關系式:、,如圖所示.
試根據圖像解決下列問題:
(1)每輛車改裝前每天的燃料費= 元,每輛車的改裝費b= 元.正常運營 天后,就可以從節(jié)省燃料費中收回改裝成本.
(2)某出租汽車公司一次性改裝了100輛車,因而,正常運營多少天后共節(jié)省燃料費40萬元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com