26、如圖,直線EF經(jīng)過正方形ABCD的頂點D,AE⊥EF于E,CF⊥EF于F,求證:AE=DF.
分析:通過證明△ADE≌△DCF,得AE=DF.
解答:證明:∵正方形ABCD,
∴AD=DC,
∵∠CDF+∠ADE=90°,且∠DAE+∠ADE=90°,
∴∠DAE=∠CDF,
∵∠DFC=∠AED,
∴△ADE≌△DCF,
即AE=DF.
點評:本題考查了正方形各邊相等,且各內(nèi)角為直角的性質(zhì),解本題的關(guān)鍵是證明△ADE≌△DCF(AAS).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•沈陽)已知,如圖,在平面直角坐標(biāo)系中,點A坐標(biāo)為(-2,0),點B坐標(biāo)為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段0B于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=-
2
x2+mx+n的圖象經(jīng)過A,C兩點.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)求證:∠BEF=∠AOE;
(3)當(dāng)△EOF為等腰三角形時,求此時點E的坐標(biāo);
(4)在(3)的條件下,當(dāng)直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的(2
2
+1)倍?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖)在平面直角坐標(biāo)系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點C在y軸正半軸上,已知點A(-1,0).

(1)請直接寫出點B、C的坐標(biāo):B
(3,0)
(3,0)
、C
(0,
3
(0,
3
;并求經(jīng)過A、B、C三點的拋物線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段AB上(點E是不與A、B兩點重合的動點),并使ED所在直線經(jīng)過點C.此時,EF所在直線與(1)中的拋物線交于點M.
①設(shè)AE=x,當(dāng)x為何值時,△OCE∽△OBC;
②在①的條件下探究:拋物線的對稱軸上是否存在點P使△PEM是等腰三角形?若存在,請寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABC的邊BC在y軸的正半軸上,點A在x軸的正半軸上,點C的坐標(biāo)為(0,8),將△ABC沿直線AB折疊,點C落在x軸的負(fù)半軸D(-4,0)處.
(1)求直線AB的解析式;
(2)點P從點A出發(fā)以每秒4
5
個單位長度的速度沿射線AB方向運動,過點P作PQ⊥AB,交x軸于點Q,PR∥AC交x軸于點R,設(shè)點P運動時間為t(秒),線段QR長為d,求d與t的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,點N是射線AB上一點,以點N為圓心,同時經(jīng)過R、Q兩點作⊙N,⊙N交y軸于點E,F(xiàn).是否存在t,使得EF=RQ?若存在,求出t的值,并求出圓心N的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)如圖①,O為坐標(biāo)原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形,sin∠AOB=
4
5
,反比例函數(shù)y=
k
x
(k>0)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F.
(1)若OA=10,求反比例函數(shù)解析式;
(2)若點F為BC的中點,且△AOF的面積S=12,求OA的長和點C的坐標(biāo);
(3)在(2)中的條件下,過點F作EF∥OB,交OA于點E(如圖②),點P為直線EF上的一個動點,連接PA,PO.是否存在這樣的點P,使以P、O、A為頂點的三角形是直角三角形?若存在,請直接寫出所有點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•錦州)如圖,拋物線y=-
18
x2+mx+n經(jīng)過△ABC的三個頂點,點A坐標(biāo)為(0,3),點B坐標(biāo)為(2,3),點C在x軸的正半軸上.
(1)求該拋物線的函數(shù)關(guān)系表達(dá)式及點C的坐標(biāo);
(2)點E為線段OC上一動點,以O(shè)E為邊在第一象限內(nèi)作正方形OEFG,當(dāng)正方形的頂點F恰好落在線段AC上時,求線段OE的長;
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點E和點C重合時停止運動.設(shè)平移的距離為t,正方形DEFG的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,請說明理由;
(4)在上述平移過程中,當(dāng)正方形DEFG與△ABC的重疊部分為五邊形時,請直接寫出重疊部分的面積S與平移距離t的函數(shù)關(guān)系式及自變量t的取值范圍;并求出當(dāng)t為何值時,S有最大值,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案