【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書超過200元一律打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是元.
【答案】248或296
【解析】解:設第一次購書的原價為x元,則第二次購書的原價為3x元,
依題意得:①當0<x≤ 時,x+3x=229.4,
解得:x=57.35(舍去);
②當 <x≤ 時,x+ ×3x=229.4,
解得:x=62,
此時兩次購書原價總和為:4x=4×62=248;
③當 <x≤100時,x+ ×3x=229.4,
解得:x=74,
此時兩次購書原價總和為:4x=4×74=296.
綜上可知:小麗這兩次購書原價的總和是248或296元.
故答案為:248或296.
本題屬于基礎題,難度不大,解決該題型題目時,根據數量關系列出方程(或方程組)是關鍵.設第一次購書的原價為x元,則第二次購書的原價為3x元.根據x的取值范圍分段考慮,根據“付款金額=第一次付款金額+第二次付款金額”即可列出關于x的一元一次方程,解方程即可得出結論.本題考查了一元一次方程的應用,解題的關鍵是分段考慮,結合熟練關系找出每段x區(qū)間內的關于x的一元一次方程.
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+3的對稱軸是直線x=1.
(1)求證:2a+b=0;
(2)若關于x的方程ax2+bx﹣8=0的一個根為4,求方程的另一個根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BC=2,∠ABC=90°,∠BAC=30°,將△ABC繞點A順時針旋轉90°,得到△ADE,其中點B與點D是對應點,點C與點E是對應點,連接BD,則BD的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點M是BC的中點,作正方形MNPQ,使點A、C分別在MQ和MN上,連接AN、BQ.
(1)直接寫出線段AN和BQ的數量關系是 .
(2)將正方形MNPQ繞點M逆時針方向旋轉θ(0°<θ≤360°)
①判斷(1)的結論是否成立?請利用圖2證明你的結論;
②若BC=MN=6,當θ(0°<θ≤360°)為何值時,AN取得最大值,請畫出此時的圖形,并直接寫出AQ的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據衛(wèi)生防疫部門要求,游泳池必須定期換水,清洗.某游泳池周五早上8:00打開排水孔開始排水,排水孔的排水速度保持不變,期間因清洗游泳池需要暫停排水,游泳池的水在11:30全部排完.游泳池內的水量Q(m2)和開始排水后的時間t(h)之間的函數圖象如圖所示,根據圖象解答下列問題:
(1)暫停排水需要多少時間?排水孔排水速度是多少?
(2)當2≤t≤3.5時,求Q關于t的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿對角線AC折疊,點B的對應點為B′,AB′與DC相交于點E,則下列結論一定正確的是( )
A.∠DAB′=∠CAB′
B.∠ACD=∠B′CD
C.AD=AE
D.AE=CE
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點P在BA的延長線上,弦CD⊥AB,垂足為E,且PC2=PEPO.
(1)求證:PC是⊙O的切線.
(2)若OE:EA=1:2,PA=6,求⊙O的半徑.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com