【題目】探究:在一次聚會(huì)上,規(guī)定每?jī)蓚(gè)人見(jiàn)面必須握手,且只握手1.

1)若參加聚會(huì)的人數(shù)為3,則共握手___次;若參加聚會(huì)的人數(shù)為5,則共握手___次;

2)若參加聚會(huì)的人數(shù)為為正整數(shù)),則共握手___次;

3)若參加聚會(huì)的人共握手28次,請(qǐng)求出參加聚會(huì)的人數(shù).

拓展:嘉嘉給琪琪出題:“若線段上共有個(gè)點(diǎn)(含端點(diǎn),),線段總數(shù)為30,求的值.”

琪琪的思考:“在這個(gè)問(wèn)題上,線段總數(shù)不可能為30.”琪琪的思考對(duì)嗎?為什么?

【答案】探究:(13,10;(2;(3)參加聚會(huì)的人數(shù)為8人;拓展:琪琪的思考對(duì),見(jiàn)解析.

【解析】

探究:(1)根據(jù)握手次數(shù)=參會(huì)人數(shù)×(參會(huì)人數(shù)-1)÷2,即可求出結(jié)論;
2)由(1)的結(jié)論結(jié)合參會(huì)人數(shù)為n,即可得出結(jié)論;

3)由(2)的結(jié)論結(jié)合共握手28次,即可得出關(guān)于n的一元二次方程,解之取其正值即可得出結(jié)論;

拓展:將線段數(shù)當(dāng)成握手?jǐn)?shù),頂點(diǎn)數(shù)看成參會(huì)人數(shù),由(2)的結(jié)論結(jié)合線段總數(shù)為30,即可得出關(guān)于m的一元二次方程,解之由該方程的解均不為整數(shù)可得出琪琪的思考對(duì).

探究:(13×(3-1)÷2=3,5×(5-1)÷2=10

故答案為:3;10

2)∵參加聚會(huì)的人數(shù)為nn為正整數(shù)),

∴每人需跟(n-1)人握手,

∴握手總數(shù)為

故答案為:

3)依題意,得:=28,
整理,得:n2-n-56=0,

解得:n1=8,n2=-7(舍去).

答:參加聚會(huì)的人數(shù)為8人.

拓展:琪琪的思考對(duì),理由如下:

如果線段數(shù)為30,則由題意,得:=30,

整理,得:m2-m-60=0,

解得m1=,m2=(舍去).

m為正整數(shù),

∴沒(méi)有符合題意的解,

∴線段總數(shù)不可能為30

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(滿分10分)已知二次函數(shù)y=﹣x2+2x+m

1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;

2)如圖,二次函數(shù)的圖象過(guò)點(diǎn)A3,0),與y軸交于點(diǎn)B,求直線AB與這個(gè)二次函數(shù)的解析式;

3)在直線AB上方的拋物線上有一動(dòng)點(diǎn)D,當(dāng)D與直線AB的距離DE最大時(shí),求點(diǎn)D的坐標(biāo),并求DE最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,內(nèi)接于,,點(diǎn)為弦的中點(diǎn),的延長(zhǎng)線交于點(diǎn),聯(lián)結(jié),過(guò)點(diǎn)于點(diǎn),聯(lián)結(jié).

1)求證:

2)如果的半徑為8,且,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,E、F是四邊形ABCD的對(duì)角線AC上的兩點(diǎn),AF=CE,DF=BE,DFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】文藝復(fù)興時(shí)期,意大利藝術(shù)大師達(dá)芬奇曾研究過(guò)圓弧所圍成的許多圖形的面積問(wèn)題. 如圖所示稱(chēng)為達(dá)芬奇的貓眼,可看成圓與正方形的各邊均相切,切點(diǎn)分別為,所在圓的圓心為點(diǎn)(或. 若正方形的邊長(zhǎng)為2,則圖中陰影部分的面積為(

A. B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了幫助本市一名患白血病的高中生,某班15名同學(xué)積極捐款,他們捐款數(shù)額如下表:

捐款的數(shù)額(單位:元)

5

10

20

50

100

人數(shù)(單位:個(gè))

2

4

5

3

1

關(guān)于這15名同學(xué)所捐款的數(shù)額,下列說(shuō)法正確的是

A.眾數(shù)是100 B.平均數(shù)是30 C.極差是20 D.中位數(shù)是20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DE分別是AB,AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連CF

(1)求證:四邊形BCFE是菱形;

(2)若CE=6,∠BEF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACO的直徑,點(diǎn)BO上一點(diǎn),PAO于點(diǎn)A,PBAC的延長(zhǎng)線交于點(diǎn)M,∠CAB APB

1)求證:PBO的切線;

2)當(dāng)sinM,OA2時(shí),求MBAB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案