【題目】如圖,△ABC中,ABAC,∠BAC90°,點(diǎn)D是直線AB上的一動點(diǎn)(不和AB重合),BECDE,交直線ACF

1)點(diǎn)D在邊AB上時(shí),試探究線段BDABAF的數(shù)量關(guān)系,并證明你的結(jié)論;

2)點(diǎn)DAB的延長線上時(shí),試探究線段BD,ABAF的數(shù)量關(guān)系,并證明你的結(jié)論.

【答案】1ABFA+BD,證明詳見解析;(2)點(diǎn)DAB的延長線上時(shí),ABAFBD,理由詳見解析;點(diǎn)DAB的反向延長線上時(shí),AB= BD-AF,理由見解析.

【解析】

1)由余角的性質(zhì)可證∠FBA=FCE,根據(jù)“ASA”證明△FAB≌△DAC,可得FA=DA,從而可得到AB=AD+BD=FA+BD;

2)分兩種情況求解:①點(diǎn)DAB的延長線上時(shí),②點(diǎn)DAB的反向延長線上時(shí),畫出圖形并借鑒(1)中的證明思路就可解決問題.

解:(1ABFA+BD

證明:如圖1

BECDBEC90°,BAC90°,

∴∠F+∠FBA90°,F+∠FCE90°

∴∠FBAFCE

∵∠FAB180°DAC90°

∴∠FABDAC

FABDAC中,

∴△FAB≌△DACASA).

FADA

ABAD+BDFA+BD

2)點(diǎn)DAB的延長線上時(shí),ABAFBD

理由如下:

當(dāng)點(diǎn)DAB的延長線上時(shí),如圖2

與(1)同樣的方法可證:FADA

ABADBDAFBD

②點(diǎn)DAB的反向延長線上時(shí),如圖3,

同理可證:FA=DA

AB=BD-AD=BD-AF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2x軸于點(diǎn)A,交y軸于點(diǎn)B,過點(diǎn)A的拋物線y=ax2+bx﹣2y軸交點(diǎn)C,與直線AB的另一個(gè)交點(diǎn)為D,點(diǎn)E是線段AD上一點(diǎn),點(diǎn)F在拋物線上,EF∥y軸,設(shè)E的橫坐標(biāo)為m

(1)用含a的代數(shù)式表示b.

(2)當(dāng)點(diǎn)D的橫坐標(biāo)為8時(shí),求出a的值.

(3)在(2)的條件下,設(shè)△ABF的面積為S,求出S最大值,并求出此時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)美麗撫順的工作部署,市政府計(jì)劃對城區(qū)道路進(jìn)行了改造,現(xiàn)安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)的工作效率是乙隊(duì)工作效率的倍,甲隊(duì)改造360米的道路比乙隊(duì)改造同樣長的道路少用3天.

(1)甲、乙兩工程隊(duì)每天能改造道路的長度分別是多少米?

(2)若甲隊(duì)工作一天需付費(fèi)用7萬元,乙隊(duì)工作一天需付費(fèi)用5萬元,如需改造的道路全長1200米,改造總費(fèi)用不超過145萬元,至少安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展書香校園活動以來,受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制作了不完整的統(tǒng)計(jì)圖表.

學(xué)生借閱圖書的次數(shù)統(tǒng)計(jì)表

借閱圖書的次數(shù)

0

1

2

3

4次及以上

人數(shù)

6

15

a

12

9

學(xué)生借閱圖書的次數(shù)扇形統(tǒng)計(jì)圖

請你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

1a  b  ;

2)該樣本數(shù)據(jù)的中位數(shù)是  次,眾數(shù)是  次;

3)請計(jì)算扇形統(tǒng)計(jì)圖中“3所對應(yīng)的扇形圓心角的度數(shù);

4)若該校共有2400名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書“4次及以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅有青、白、黃、黑四件襯衫,又有米色、白色、藍(lán)色三條裙子,她最喜歡的搭配是白色襯衫配米色裙子,最不喜歡青色襯衫配藍(lán)色裙子或者黑色襯衫配藍(lán)色裙子.

1)黑暗中,她隨機(jī)拿出一套衣服正是她最喜歡的搭配的概率是多少?

2)黑暗中,她隨機(jī)拿出一套衣服正是她最喜歡的搭配,這樣的巧合發(fā)生的機(jī)會與黑暗中她隨機(jī)拿出一套衣服正是她最不喜歡的搭配的機(jī)會是否相等?畫樹狀圖加以分析說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線lyx,過點(diǎn)A11,0)作x軸的垂線交直線l于點(diǎn)B1,以A1B1為邊作正方形A1B1C1A2,過點(diǎn)A2x軸的垂線交直線l于點(diǎn)B2,以A2B2為邊作正方形A2B2C2A3,…;則點(diǎn)A5的坐標(biāo)為_____,點(diǎn)Cn的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了防止水土流失,某村開展綠化荒山活動,計(jì)劃經(jīng)過若干年使本村綠化總面積新增360萬平方米.自2014年初開始實(shí)施后,實(shí)際每年綠化面積是原計(jì)劃的1.6倍,這樣可提前4年完成任務(wù).問實(shí)際每年綠化面積多少萬平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AD是⊙O直徑,ECB延長線上一點(diǎn),且∠BAE=C

(1)求證:直線AE是⊙O的切線;

(2)若∠BAE=30°,O的半徑為2,求陰影部分的面積;

(3)若EB=AB,cosE=,AE=24,求EB的長及⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題探究:如圖,在四邊形ABCD中,ABCD,EBC的中點(diǎn),AE是∠BAD的平分線,則線段AB,ADDC之間的等量關(guān)系為   ;

2)方法遷移:如圖,在四邊形ABCD中,ABCD,AFDC的延長線交于點(diǎn)FEBC的中點(diǎn),AE是∠BAF的平分線,試探究線段ABAF,CF之間的等量關(guān)系,并證明你的結(jié)論;

3)聯(lián)想拓展:如圖,ABCFEBC的中點(diǎn),點(diǎn)D在線段AE上,∠EDF=∠BAE,試探究線段AB,DF,CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案