【題目】如圖,點P,MN分別在等邊△ABC的各邊上,且MP⊥ABMN⊥BC,PN⊥AC.

(1)求證:△PMN是等邊三角形;

(2)AB9 cm,求CM的長度.

【答案】(1)見解析;(2CM3cm

【解析】

1)根據(jù)等邊三角形的性質(zhì)得出∠A=B=C,進而得出∠MPB=NMC=PNA=90°,再根據(jù)平角的意義即可得出∠NPM=PMN=MNP,即可證得PMN是等邊三角形;
2)易證得PBM≌△MCN≌△NAP,得出PA=BM=CN,PB=MC=AN,從而求得BM+PB=AB=9cm,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半得出2PB=BM,即可求得PB的長,進而得出CM的長.

解:(1)∵△ABC是正三角形,
∴∠A=B=C,
MPAB,MNBC,PNAC,
∴∠MPB=NMC=PNA=90°,
∴∠PMB=MNC=APN
∴∠NPM=PMN=MNP,
∴△PMN是等邊三角形;
2)根據(jù)題意PBM≌△MCN≌△NAP,
PA=BM=CN,PB=MC=AN
BM+PB=AB=9cm,
∵△ABC是正三角形,
∴∠A=B=C=60°,
2PB=BM
2PB+PB=9cm,
PB=3cm,
CM=3cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為響應區(qū)“美麗廣西 清潔鄉(xiāng)村”的號召,某校開展“美麗廣西 清潔校園”的活動,該校經(jīng)過精心設計,計算出需要綠化的面積為498m2 , 綠化150m2后,為了更快的完成該項綠化工作,將每天的工作量提高為原來的1.2倍.結(jié)果一共用20天完成了該項綠化工作.該項綠化工作原計劃每天完成多少m2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其中部分圖象如圖所示,下列結(jié)論錯誤的是( )

A.4ac<b2
B.方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
C.當y>0時,x的取值范圍是﹣1≤x<3
D.當x<0時,y隨x增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中的位置如圖.

(1)分別寫出下列各點的坐標:

________, ________, ________;

(2)說明 經(jīng)過怎樣的平移得到:________;

(3)若點 ,)是 內(nèi)部一點,則平移后內(nèi)的對應點 的坐標為________;

(4) 的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市規(guī)定:出租車起步價允許行駛的最遠路程為3km,超過3km的部分每千米另收費,甲說:“我乘這種出租車走了9km,付了14元.”乙說:“我乘這種出租車走了13千米,付了20元”.請你算出這種出租車的起步價是多少元?超過3km后,每千米的車費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC,∠ACB90°,ACBCAEBC邊上的中線,過點CAE 的垂線CF,垂足為F過點BBD⊥BC,CF的延長線于點D.

(1)求證:AECD.

(2)AC12 cm,BD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在四邊形OABC中,AB∥OC,BC⊥x軸于點C,A(2,﹣2),B(6,﹣2),動點P從點O出發(fā),沿著x軸正方向以每秒2個單位的速度移動,過點P作PQ垂直于直線OA,垂足為點Q,設點P移動的時間t秒(0<t<4).△OPQ與四邊形OABC重疊部分的面積為S.

(1)求經(jīng)過O、A、B三點的拋物線的解析式;
(2)若將△OPQ沿著直線PQ翻折得到△O′PQ,則當t=時,點O′恰好在拋物線上.
(3)在(2)的條件下,記△O′PQ與四邊形OABC重疊的面積為S,求S與t的函數(shù)關系式,并注明自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E,N,P,G分別在邊AB,BC,CD,DA上,點M,F(xiàn),Q都在對角線BD上,且四邊形MNPQ和AEFG均為正方形,則 的值等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD和正方形CEFG邊長分別為ab,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;BEDG;DE2+BG2=2a2+2b2,其中正確結(jié)論有( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習冊答案