【題目】如圖,已知平行四邊形OABC的三個頂點A、B、C在以O為圓心的半圓上,過點C作CD⊥AB,分別交AB、AO的延長線于點D、E,AE交半圓O于點F,連接CF.
(1)判斷直線DE與半圓O的位置關(guān)系,并說明理由;
(2)①求證:CF=OC;
②若半圓O的半徑為12,求陰影部分的周長.
【答案】(1)DE是⊙O的切線;(2)①證明見解析;②4π+12+.
【解析】試題分析:(1)結(jié)論:DE是⊙O的切線.首先證明△ABO,△BCO都是等邊三角形,再證明四邊形BDCG是矩形,即可解決問題;
(2)①只要證明△OCF是等邊三角形即可解決問題;
②求出EC、EF、弧長CF即可解決問題.
試題解析:(1)結(jié)論:DE是⊙O的切線.
理由:∵四邊形OABC是平行四邊形,又∵OA=OC,∴四邊形OABC是菱形,
∴OA=OB=AB=OC=BC,∴△ABO,△BCO都是等邊三角形,∴∠AOB=∠BOC=∠COF=60°,
∵OB=OF,∴OG⊥BF,
∵AF是直徑,CD⊥AD,∴∠ABF=∠DBG=∠D=∠BGC=90°,∴四邊形BDCG是矩形,
∴∠OCD=90°,∴DE是⊙O的切線;
(2)①由(1)可知:∠COF=60°,OC=OF,∴△OCF是等邊三角形,∴CF=OC;
②在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,
∴OE=2OC=24,EC=,
∵OF=12,∴EF=12,∴的長= =4π,
∴陰影部分的周長為4π+12+.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=2.若點M,N分別在OA,OB上,且△PMN為等邊三角形,則滿足上述條件的△PMN有( )
A. 2個 B. 3個 C. 4個 D. 無數(shù)個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“富春包子”是揚州特色早點,富春茶社為了了解顧客對各種早點的喜愛情況,設計了如右圖的調(diào)查問卷,對顧客進行了抽樣調(diào)查.根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖.
根據(jù)以上信息,解決下列問題:
(1)條形統(tǒng)計圖中“湯包”的人數(shù)是 ,扇形統(tǒng)計圖中“蟹黃包”部分的圓心角為 °;
(2)根據(jù)抽樣調(diào)查結(jié)果,請你估計富春茶社1000名顧客中喜歡“湯包”的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1) 若方程4x-1=3x+1和2m+x=1的解相同.求m的值.
(2)在公式S= (a+b)h中,已知S=120,b=18,h=8.求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】坐火車從上海到婁底,高鐵G1329次列車比快車K575次列車少需要9小時,已知上海到婁底的鐵路長約1260千米,G1329的平均速度是K575的2.5倍.
(1)求K575的平均速度;
(2)高鐵G1329從上海到婁底只需幾小時?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com