【題目】如圖,在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)A(a,0)在x軸的正半軸上,定點(diǎn)B(m, n)在第一象限內(nèi)(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF , 連接FD , 點(diǎn)M為線段FD的中點(diǎn).作BB1⊥x軸于點(diǎn)B1 , 作FF1⊥x軸于點(diǎn)F1.
(1)填空:由△≌△ , 及B(m, n)可得點(diǎn)F的坐標(biāo)為 , 同理可得點(diǎn)D的坐標(biāo)為;(說(shuō)明:點(diǎn)F , 點(diǎn)D的坐標(biāo)用含m , n , a的式子表示)
(2)直接利用(1)的結(jié)論解決下列問(wèn)題:
①當(dāng)點(diǎn)A在x軸的正半軸上指定范圍內(nèi)運(yùn)動(dòng)時(shí),點(diǎn)M總落在一個(gè)函數(shù)圖象上,求該函數(shù)的解析式(不必寫(xiě)出自變量x的取值范圍);
②當(dāng)點(diǎn)A在x軸的正半軸上運(yùn)動(dòng)且滿(mǎn)足2≤a≤8時(shí),求點(diǎn)M所經(jīng)過(guò)的路徑的長(zhǎng).
【答案】
(1);;;
(2)
解:①設(shè)點(diǎn)M的坐標(biāo)為 .
∵ 點(diǎn)M為線段FD的中點(diǎn), , ,
可得點(diǎn)M的坐標(biāo)為 .
∴
消去a,得 .
所以,當(dāng)點(diǎn)A在x軸的正半軸上指定范圍內(nèi)運(yùn)動(dòng)時(shí),相應(yīng)的點(diǎn)M在運(yùn)動(dòng)時(shí)總落在直線 上,即點(diǎn)M總落在函數(shù) 的圖象上.
②如圖2,當(dāng)點(diǎn)A在x軸的正半軸上運(yùn)動(dòng)且滿(mǎn)足2≤a≤8時(shí),點(diǎn)A運(yùn)動(dòng)的路徑為線段 ,其中 , ,相應(yīng)地,點(diǎn)M所經(jīng)過(guò)的路徑為直線 上的一條線段 ,其中 , .
而 ,
∴ 點(diǎn)M所經(jīng)過(guò)的路徑的長(zhǎng)為
【解析】(1)如圖1.由△ ≌△ ,及B(m, n)可得點(diǎn)F的坐標(biāo)為 ,同理可得點(diǎn)D的坐標(biāo)為 .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用線段的中點(diǎn)和兩點(diǎn)間的距離的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握線段的中點(diǎn)到兩端點(diǎn)的距離相等;同軸兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個(gè)點(diǎn),間距求法亦如此.平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值.差方相加開(kāi)平方,距離公式要牢記.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程 有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)當(dāng)m為正整數(shù)時(shí),求方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCO中,O為坐標(biāo)原點(diǎn),A在y軸上,C在x軸上,B的坐標(biāo)為(8,6),P是線段BC上動(dòng)點(diǎn),點(diǎn)D是直線y=2x﹣6上第一象限的點(diǎn),若△APD是等腰直角三角形,則點(diǎn)D的坐標(biāo)為_____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一樓房AB后有一假山,其坡度為i=1∶,山坡坡面上E點(diǎn)處有一休息亭,測(cè)
得假山坡腳C與樓房水平距離BC=25米,與亭子距離CE=20米,小麗從樓房頂測(cè)得E點(diǎn)的俯角
為45°,求樓房AB的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞點(diǎn)B沿順時(shí)針?lè)较蛐D(zhuǎn)90°后,得到△CBE.
(1)求∠DCE的度數(shù);
(2)若AB=4,CD=3AD,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y1=-x2+4x和直線y2=2x.我們約定:當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2,若y1=y2,記M=y1=y2,下列判斷:①當(dāng)x>2時(shí),M=y2;②當(dāng)x<0時(shí),x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x=1.其中正確的有( 。
A. ③④ B. ②③ C. ②④ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),⊙C與y軸相切于D點(diǎn),與x軸相交于A(2,0)、B(8,0)兩點(diǎn),圓心C在第四象限.
(1)求點(diǎn)C的坐標(biāo);
(2)連接BC并延長(zhǎng)交⊙C于另一點(diǎn)E,若線段BE上有一點(diǎn)P,使得AB2=BPBE,能否推出AP⊥BE?請(qǐng)給出你的結(jié)論,并說(shuō)明理由;
(3)在直線BE上是否存在點(diǎn)Q,使得AQ2=BQEQ?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,也請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點(diǎn)E、F同時(shí)由A、C兩點(diǎn)出發(fā),分別沿AB、CB方向向點(diǎn)B勻速移動(dòng)(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過(guò)t秒△DEF為等邊三角形,則t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】適合下列條件的△ABC中,直角三角形的個(gè)數(shù)為( ) ①a= ,b= ,c= ;
②a=6,∠A=45°;
③∠A=32°,∠B=58°;
④a=7,b=24,c=25.
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com