數(shù)學(xué)課上,張老師出示了問(wèn)題:如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF = 90°,且EF交正方形外角∠DCG的平行線CF于點(diǎn)F , 求證:AE=EF .經(jīng)過(guò)思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連結(jié)ME,則AM = EC,
易證△AME≌△ECF,所以AE = EF .   在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:
小題1:小穎提出:如圖2,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE = EF ”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過(guò)程;如果不正確,請(qǐng)說(shuō)明理由
小題2:小華提出:如圖3,點(diǎn)E是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE = EF ”仍然成立. 你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過(guò)程;如果不正確,請(qǐng)說(shuō)明理由.

小題1:正確
小題2:正確
解:(1)正確.
證明:在AB上取一點(diǎn)M,使AM=EC,連結(jié)ME,

∴BM=BE. ∴∠BME=45°.  ∴∠AME=135°.
∵CF是外角平分線,                             
∴∠DCF = 45°. ∴∠ECF = 135°.
∴∠AME = ∠ECF .
∵∠AEB +∠BAE=90°,∠AEB + ∠CEF = 90°,
∴∠BAE = ∠CEF.
∴△AME ≌ △ECF(ASA).
∴AE=EF. 
(2)正確.
證明:
在BA的延長(zhǎng)線上取一點(diǎn)N,
使AN=CE,連接NE.

∴BN=BE.
∴∠N=∠FCE=45°.
∵四邊形ABCD是正方形,
∴AD∥BE . ∴∠DAE=∠BEA .
∴∠NAE=∠CEF .  ∴△ANE≌△ECF(ASA).
∴AE=EF.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形ABCD中,E點(diǎn)為BC中點(diǎn),連接AE,過(guò)B點(diǎn)作BFAE,交CDF點(diǎn),交AEG點(diǎn),連接GD,過(guò)A點(diǎn)作AHGDGDH點(diǎn).

(1) 求證:△ABE≌△BCF;
(2) 若正方形邊長(zhǎng)為4,AH =,求△AGD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知點(diǎn)G是梯形的中位線上任意一點(diǎn),若梯形的面積為20cm2,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

平行四邊形ABCD的周長(zhǎng)為36cm,若AB:BC=1:5,則AB="____cm" BC=___cm;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如上圖,小章利用一張左、右兩邊已經(jīng)破損的長(zhǎng)方形紙片ABCD做折紙游戲,他將紙片沿EF折疊后,D、C兩點(diǎn)分別落在D ′、C ′ 的位置,并利用量角器量得∠EFB=65°,則∠AED ′等于  ▲  °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

□ABCD中, ∠B—∠A=30°,則∠A、B、∠C、∠D的度數(shù)分別是 (      )
A.95°、85°、95°、85°B.85°、95°、8 5°、95°
C.105°、75°、105°、75°D.75°、105°、75°、105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在□ABCD中,EAD邊上的中點(diǎn).BE平分∠ABC,AB = 2,則□ABCD的周長(zhǎng)是_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:將△ABC紙片沿DE折疊成圖①,此時(shí)點(diǎn)A落在四邊形BCDE內(nèi)部,則∠A與∠1、∠2之間有一種數(shù)量關(guān)系保持不變,
小題1:請(qǐng)找出這種數(shù)量關(guān)系并說(shuō)明理由.
小題2:若折成圖②或圖③,即點(diǎn)A落在BE或CD上時(shí),分別寫出∠A與∠2;∠A與∠1之間的關(guān)系;(不必證明)
小題3:若折成圖④,寫出∠A與∠1、∠2之間的關(guān)系式;(不必證明);若折成圖⑤,寫出∠A與∠1、∠2之間的關(guān)系式.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知正方形ABCD在直線MN的上方,BC在直線MN上,EBC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG

(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并猜測(cè)∠FCN的度數(shù)是否總保持不變,
若∠FCN的大小保持不變,請(qǐng)說(shuō)明理由;
若∠FCN的大小發(fā)生改變,請(qǐng)舉例說(shuō)明;

查看答案和解析>>

同步練習(xí)冊(cè)答案