【題目】如圖,在AOB中,AOB=90°,OA=3,OB=4.將AOB沿x軸依次以點A、B、O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn),分別得到圖、圖、…,則旋轉(zhuǎn)得到的圖的直角頂點的坐標(biāo)為_______.

【答案】360).

【解析】試題分析:如圖,在△AOB中,∠AOB=90°OA=3,OB=4,則AB=5,每旋轉(zhuǎn)3次為一循環(huán),則圖、的直角頂點坐標(biāo)為(120),圖、的直角頂點坐標(biāo)為(24,0),所以,圖、⑩10的直角頂點為(360).△AOB中,∠AOB=90°,OA=3,OB=4, ∴AB=5,、的直角頂點坐標(biāo)為(12,0),

每旋轉(zhuǎn)3次為一循環(huán),的直角頂點坐標(biāo)為(24,0),、的直角頂點為(360

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明所在的學(xué)校加強學(xué)生的體育鍛煉,準(zhǔn)備從某體育用品商店一次購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買2個籃球和3個足球共需310元,購買5個籃球和2個足球共需500元.

(1)每個籃球和足球各需多少元?

(2)根據(jù)實際情況,需從該商店一次性購買籃球和足球功60個,要求購買籃球和足球的總費用不超過4000元,那么最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB=CD,ABCD相交于點O,1=60°,CE是由AB平移所得,試確定AC+BDAB的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的角平分線,DEAB于點E,DFAC于點F,連接EFAD于點G

1)求證:AD垂直平分EF;

2)若BAC=60°,猜測DGAG間有何數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個數(shù)軸上的點A都表示實數(shù)a,其中,一定滿足|a|>|-2|的序號為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一單位長度為1cm的方格紙上,依如圖所示的規(guī)律,設(shè)定點A1、A2、A3、A4、A5、A6、A7、…、An,連接點O、A1、A2組成三角形,記為1,連接O、A2、A3組成三角形,記為2,連O、An、An+1組成三角形,記為n(n為正整數(shù)),請你推斷,當(dāng)n50時,n的面積=( )cm2.

A. 1275 B. 2500 C. 1225 D. 1250

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題原型:如圖,在等腰直角三角形ABC中,ACB=90°,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.過點DBCDBC邊上的高DE, 易證ABC≌△BDE,從而得到BCD的面積為

初步探究:如圖,在Rt△ABC中,∠ACB=90°BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.用含a的代數(shù)式表示△BCD的面積,并說明理由.

簡單應(yīng)用:如圖,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.直接寫出△BCD的面積.(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC,已知點O是三個內(nèi)角平分線的交點,ODAB,OEAC,則圖中等腰三角形的個數(shù)是(  )

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D、EBC邊上的點,連接AD,AE,以△ADE的邊AE所在直線為對稱軸作△ADE的軸對稱圖形△AD′E,連接D′C,若BD=CD′;

(1)求證:△ABD≌△ACD′;

(2)若∠BAC=120°,求∠DAE的度數(shù)

查看答案和解析>>

同步練習(xí)冊答案