【題目】請(qǐng)完成下面的解答過(guò)程完.如圖,∠1=∠B,∠C=110°,求∠3的度數(shù).

解:∵∠1=∠B

AD∥( )(內(nèi)錯(cuò)角相等,兩直線平行)

∴∠C+∠2=180°,( )

∵∠C=110°.

∴∠2=( )°.

∴∠3=∠2=70°.( )

【答案】BC;兩直線平行,同旁內(nèi)角互補(bǔ);70;對(duì)頂角相等.

【解析】

依據(jù)內(nèi)錯(cuò)角相等,兩直線平行,即可得到AD//BC,進(jìn)而得出∠C+2=180°,依據(jù)∠C=110°即可得到∠2=70°,再依據(jù)對(duì)頂角相等可得∠3=2=70°.

解:解:∵∠1=∠B

AD/BC(內(nèi)錯(cuò)角相等,兩直線平行)

∴∠C+∠2=180°,(兩直線平行,同旁內(nèi)角互補(bǔ))

∵∠C=110°.

∴∠2=70°.

∴∠3=∠2=70°(對(duì)頂角相等 )

故答案為BC;兩直線平行,同旁內(nèi)角互補(bǔ);70;對(duì)頂角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)O是菱形ABOC的一個(gè)頂點(diǎn),邊OB落在x軸的負(fù)半軸上,且cosBOC=,頂點(diǎn)C的坐標(biāo)為(a,4),反比例函數(shù)的圖象與菱形對(duì)角線AO交于D點(diǎn),連接BD,當(dāng)BDx軸時(shí),k的值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為平行四邊形的對(duì)角線,,,,相交于,直線交線段的延長(zhǎng)線于,下面結(jié)論:①;②;③;④其中正確的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)某種商品平均每天可銷(xiāo)售30件,每件盈利50元.為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件.設(shè)每件商品降價(jià)x元.據(jù)此規(guī)律,請(qǐng)回答:

1)商場(chǎng)日銷(xiāo)售量增加______件,每件商品盈利______.元(用含的代數(shù)式表示);

2)在上述條件不變、銷(xiāo)售正常情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到1428元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙兩家汽車(chē)銷(xiāo)售公司根據(jù)近幾年的銷(xiāo)售量分別制作了如圖所示的統(tǒng)計(jì)圖,從20142018年,這兩家公司中銷(xiāo)售量增長(zhǎng)較快的是_____公司(”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人民生活水平的不斷提高,我市家庭轎車(chē)的擁有量逐年增加.據(jù)統(tǒng)計(jì),某小區(qū)2015年底擁有家庭轎車(chē)64輛,2017年底家庭轎車(chē)的擁有量達(dá)到100輛.

(1)若該小區(qū)2015年底到2018年底家庭轎車(chē)擁有量的年平均增長(zhǎng)率都相同,求該小區(qū)到2018年底家庭轎車(chē)將達(dá)到多少輛?

(2)為了緩解停車(chē)矛盾,該小區(qū)決定投資15萬(wàn)元再建造若干個(gè)停車(chē)位.據(jù)測(cè)算,建造費(fèi)用分別為室內(nèi)車(chē)位5000元/個(gè),露天車(chē)位1000元/個(gè),考慮到實(shí)際因素,計(jì)劃露天車(chē)位的數(shù)量不少于室內(nèi)車(chē)位的2倍,但不超過(guò)室內(nèi)車(chē)位的2.5倍,求該小區(qū)最多可建兩種車(chē)位各多少個(gè)?試寫(xiě)出所有可能的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=12AD=10.點(diǎn)Q從點(diǎn)D出發(fā)沿DA以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A勻速運(yùn)動(dòng);點(diǎn)P從點(diǎn)A出發(fā)沿AB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B勻速運(yùn)動(dòng).伴隨PQ的運(yùn)動(dòng),直線EF保持垂直平分PQ于點(diǎn)F,交射線DC于點(diǎn)E,點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí)停止運(yùn)動(dòng),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒(0<t<6),t=____________時(shí),EF能平分矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的文字,解答問(wèn)題:大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),于是小明用-1來(lái)表示的小數(shù)部分,事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span><<,所以的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.請(qǐng)據(jù)此解答:

1的整數(shù)部分是 ,小數(shù)部分是

2)如果的小數(shù)部分為a,的整數(shù)部分為b,求a+b-的值;

3)若設(shè)2+的整數(shù)部分為x,小數(shù)部分為y,求(y-x2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于AB兩點(diǎn),點(diǎn)A坐標(biāo)為,點(diǎn)B坐標(biāo)為OAx軸正半軸夾角的正切值為,直線ABy軸于點(diǎn)C,過(guò)Cy軸的垂線交反比例函數(shù)圖象于點(diǎn)D,連接OD、BD

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)連接BD,求出BDC的周長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案