【題目】已知中,,,直線經(jīng)過點(diǎn),分別過點(diǎn),作直線的垂線,垂足分別為點(diǎn),,若,,則線段的長為__________

【答案】

【解析】

分兩種情況:①如圖1所示:先證出∠1=3,由勾股定理求出CE,再證明BCF≌△CAE,得出對應(yīng)邊相等CF=AE=3,得出EF=CE-CF即可;

②如圖2所示:先證出∠1=3,由勾股定理求出CE,再證明BCF≌△CAE,得出對應(yīng)邊相等CF=AE=3,得出EF=CE+CF即可.

分兩種情況:①如圖1所示:

∵∠ACB=90°,

∴∠1+2=90°,

BFCE,

∴∠BFC=90°

∴∠2+3=90°,

∴∠1=3,

AECE,

∴∠AEC=90°,

CE=,

BCFCAE中,

,

∴△BCF≌△CAEAAS),

CF=AE=3,

EF=CE-CF=4-3=1

②如圖2所示:

∵∠ACB=90°,

∴∠1+2=90°,

BFCF,

∴∠BFC=90°,

∴∠2+3=90°,

∴∠1=3,

AECF,

∴∠AEC=90°

CE=,

BCFCAE中,

,

∴△BCF≌△CAEAAS),

CF=AE=3,

EF=CE+CF=4+3=7;

綜上所述:線段EF的長為:17

故答案為:17

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠BACBCD.若BC=16,CD=6,則AC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的方法拼成一個邊長為(mn)的正方形.

請用兩種不同的方法求圖2中陰影部分的面積.

方法1   ;方法2   ;

觀察圖2寫出,三個代數(shù)式之間的等量關(guān)系: ;

根據(jù)⑵中你發(fā)現(xiàn)的等量關(guān)系,解決如下問題:若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC.利用直尺和圓規(guī),根據(jù)下列要求作圖(不寫作法,保留作圖痕跡),并回答問題.

1)作∠ABC的平分線BD、交AC于點(diǎn)D

2)作線段BD的垂直平分線,交AB于點(diǎn)E,交BC于點(diǎn)F,連接DE,DF

3)寫出你所作出的圖形中的相等線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l的解析式為y=-x+,與x軸,y軸分別交于A,B兩點(diǎn),雙曲線與直線l交于E,F兩點(diǎn),點(diǎn)E的橫坐標(biāo)為1.

(1)k的值及F點(diǎn)的坐標(biāo);

(2)連接OE,OF,求EOF的面積;

(3)若點(diǎn)PEF下方雙曲線上的動點(diǎn)(不與EF重合),過點(diǎn)Px軸,y軸的垂線,分別交直線l于點(diǎn)M,N,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,且AB=4,點(diǎn)C在半徑OA上(點(diǎn)C與點(diǎn)O、點(diǎn)A不重合),過點(diǎn)CAB的垂線交⊙O于點(diǎn)D.連接OD,過點(diǎn)BOD的平行線交⊙O于點(diǎn)E,交CD的延長線于點(diǎn)F.

(1)若點(diǎn)E的中點(diǎn),求∠F的度數(shù);

(2)求證:BE=2OC;

(3)設(shè)AC=x,則當(dāng)x為何值時BEEF的值最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,按如下步驟作圖:

①以點(diǎn)A為圓心,AB長為半徑畫;

②以點(diǎn)C為圓心,CB長為半徑畫弧,兩弧相交于點(diǎn)D;

③連接BD,與AC交于點(diǎn)E,連接AD、CD;

1)求證:;

2)當(dāng)時,猜想四邊形ABCD是什么四邊形,并證明你的結(jié)論;

3)當(dāng),,現(xiàn)將四邊形ABCD通過割補(bǔ),拼成一個正方形,那么這個正方形的邊長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有20箱蘋果,以每箱25千克為標(biāo)準(zhǔn),超過的千克數(shù)用正數(shù)表示,不足的千克數(shù)用負(fù)數(shù)表示,結(jié)果記錄如表:

120箱蘋果中,最重的一箱比最輕的一箱重   kg

2)與標(biāo)準(zhǔn)質(zhì)量相比,20箱蘋果總計(jì)超過或不足多少千克?

3)若蘋果每千克售價12元,則售出這20箱蘋果可獲得多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(背景知識)

數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.

(問題情境)

如圖,數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為8,點(diǎn)從點(diǎn)出發(fā),以每秒3個單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動,同時點(diǎn)從點(diǎn)出發(fā),以每秒2個單位長度的速度向左勻速運(yùn)動,設(shè)運(yùn)動時間為秒(.

(綜合運(yùn)用)

1)填空:

、兩點(diǎn)之間的距離________,線段的中點(diǎn)表示的數(shù)為__________.

②用含的代數(shù)式表示:秒后,點(diǎn)表示的數(shù)為____________;點(diǎn)表示的數(shù)為___________.

③當(dāng)_________時,、兩點(diǎn)相遇,相遇點(diǎn)所表示的數(shù)為__________.

2)當(dāng)為何值時,.

3)若點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),點(diǎn)在運(yùn)動過程中,線段的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段的長.

查看答案和解析>>

同步練習(xí)冊答案