(2009•姜堰市二模)已知:如圖,△ABC是等邊三角形,D、E分別是BA、CA的延長線上的點,且AD=AE,連接ED并延長到F,使得EF=EC,連接AF、CF、BE.
(1)求證:四邊形BCFD是平行四邊形;
(2)試指出圖中與AF相等的線段,并說明理由.

【答案】分析:(1)根據(jù)定義兩組對邊分別平行的四邊形是平行四邊形,在本題中,因為△ABC為等邊三角形,AD、AE分別為CA、BA的延長線且AE=AD,所以△ADE也為等邊三角形,可知EF和BC平行,又因為EC=EF,所以△ECF也為等邊三角形,即CF和BD平行,來證明兩組對邊分別平行;
(2)從圖象觀察,AF在三角形ADF中,而和ADF形狀相同的是三角形ABE,所以,可試著證明兩三角形全等.
解答:證明:(1)∵△ABC為等邊三角形,且AE=AD,
∴由題可知∠AED=∠ADE=∠EAD=60°
∴EF∥BC,
又∵EC=EF,
∴△ECF為等邊三角形,即∠EFC=∠EDB=60°,
∴CF∥BD
∴四邊形BCFD為平行四邊形.

(2)AF=EB.
在△AED中,∵AE=AD,∠EAD=60°,
∴∠BAE=120°,∠EDA=60°,
∴∠ADF=120°.
即∠EAB=∠ADF,
又由(1)知DF=BC=BA,
∴△ADF≌△EAB.
∴AF=EB.
點評:本題考查了平行四邊形的判定,解題的關(guān)鍵是找準題目中的已知條件,利用平行四邊形的定義進行解題.另外此題還考查了全等的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年江蘇省泰州市(姜堰市二附中等)四所名校中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•姜堰市二模)如圖,拋物線與x軸的兩個交點A、B,與y軸交于點C,A點坐標為(4,0),C點坐標(0,-4).
(1)求拋物線的解析式;
(2)用直尺和圓規(guī)作出△ABC的外接圓⊙M,(不寫作法,保留作圖痕跡),并求⊙M的圓心M的坐標;
(3)將直線AC繞A點順時針旋轉(zhuǎn)67.5°后交y軸于點P,若拋物線上的點Q關(guān)于直線AP對稱的點正好落在x軸上,求Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省泰州市(姜堰市二附中等)四所名校中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•姜堰市二模)已知一次函數(shù)y=kx+b與雙曲線在第一象限交于A、B兩點,A點橫坐標為1.B點橫坐標為4.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象指出不等式的解集;
(3)點P是x軸正半軸上一個動點,過P點作x軸的垂線分別交直線和雙曲線于M、N,設(shè)P點的橫坐標是t(t>0),△OMN的面積為S,求S和t的函數(shù)關(guān)系式,并指出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省泰州市(姜堰市二附中等)四所名校中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•姜堰市二模)有一個裝有進出水管的容器,單位時間內(nèi)進水管與出水管的進出水量均一定,已知容器的容積為600升,圖中線段OA與BC,分別表示單獨打開一個進水管和單獨打開一個出水管時,容器的存水量Q(升)隨時間t(分)變化的函數(shù)關(guān)系.
(1)求線段BC所表示的Q與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)現(xiàn)已知水池內(nèi)有水200升,先打開兩個進水管和一個出水管一段時間,然后再關(guān)上一個進水管,直至把容器放滿,總共用時10分鐘.請問,在這個過程中同時打開兩個進水管和一個出水管的時間是多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省徐州市中考數(shù)學模擬試卷(解析版) 題型:填空題

(2009•姜堰市二模)有一組數(shù)據(jù):11,8,-10,9,12極差是   

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省泰州市(姜堰市二附中等)四所名校中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•姜堰市二模)(1)計算:|-0.5|+(π-3)--cos60°;
(2)解不等式:

查看答案和解析>>

同步練習冊答案