【題目】如圖銳角△ABC,若∠ABC=40°,∠ACB=70°,點(diǎn)D、E在邊AB、AC上,CD與BE交于點(diǎn)H.
(1)若BE⊥AC,CD⊥AB,求∠BHC的度數(shù).
(2)若BE、CD平分∠ABC和∠ACB,求∠BHC的度數(shù).
【答案】
(1)解:∵BE⊥AC,∠ACB=70°,
∴∠EBC=90°﹣70°=20°,
∵CD⊥AB,∠ABC=40°,
∴∠DCB=90°﹣40°=50°,
∴∠BHC=180°﹣20°﹣50°=110°.
(2)解:∵BE平分∠ABC,∠ABC=40°,
∴∠EBC=20°,
∵DC平分∠ACB,∠ACB=70°,
∴∠DCB=35°,
∴∠BHC=180°﹣20°﹣35°=125°
【解析】(1)欲求∠BHC,根據(jù)∠BHC=180°-∠HBC-∠HCB,只要求出∠HBC,∠HCB即可;
(2)先根據(jù)角平分線的定義得到∠EBC=20°,∠DCB=35°,再根據(jù)三角形的內(nèi)角即可求得∠BHC的度數(shù).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的內(nèi)角和外角的相關(guān)知識(shí),掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=x+1的圖象與y軸交于點(diǎn)A,一次函數(shù)y=4x+a的圖象與x軸以及y=x+1的圖象分別交于點(diǎn)C,B.
(1)若點(diǎn)B的橫坐標(biāo)為1,求四邊形AOCB的面積;
(2)若一次函數(shù)y=4x+a的圖象與函數(shù)y=x+1的圖象的交點(diǎn)B始終在第一象限,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)的圖象過點(diǎn)A(,2).
(1)求k的值;
(2)如圖,在反比例函數(shù)(x>0)上有一點(diǎn)C,過A點(diǎn)的直線l∥x軸,并與OC的延長(zhǎng)線交于點(diǎn)B,且OC=2BC,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)(x>0)的圖象交于點(diǎn)P(m,4),與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,且AC=BC.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,求出點(diǎn)D的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為直徑,過點(diǎn)B的切線與AC的延長(zhǎng)線交于點(diǎn)D,E是BD中點(diǎn),連接CE.
(1)求證:CE是⊙O的切線;
(2)若AC=4,BC=2,求BD和CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)請(qǐng)用兩種不同的方法求圖2中陰影部分的面積.
方法1:;
方法2:;
(2)觀察圖2請(qǐng)你寫出下列三個(gè)代數(shù)式:(m+n)2 , (m-n)2 , mn之間的等量關(guān)系;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知: , ,求: 的值;
②已知: , ,求: 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù);
(3)拓展探究:如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE. ①∠AEB的度數(shù)為°;
②探索線段CM、AE、BE之間的數(shù)量關(guān)系為 . (直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各式的值
(1)已知x= ,y= ,求代數(shù)式(2x+3y)2﹣(2x﹣3y)2的值.
(2)已知a﹣b=5,ab=1,求a2+b2的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com