【題目】某家電銷售商場(chǎng)電冰箱的銷售價(jià)為每臺(tái)1600元,空調(diào)的銷售價(jià)為每臺(tái)1400元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多300元,商場(chǎng)用9000元購(gòu)進(jìn)電冰箱的數(shù)量與用7200元購(gòu)進(jìn)空調(diào)數(shù)量相等.

(1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?

(2)現(xiàn)在商場(chǎng)準(zhǔn)備一次購(gòu)進(jìn)這兩種家電共100臺(tái),設(shè)購(gòu)進(jìn)電冰箱x臺(tái),這100臺(tái)家電的銷售利潤(rùn)為Y元,要求購(gòu)進(jìn)空調(diào)數(shù)量不超過(guò)電冰箱數(shù)量的2倍,總利潤(rùn)不低于16200元,請(qǐng)分析合理的方案共有多少種?

(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)電冰箱出廠價(jià)下調(diào)K(0K150)元,若商場(chǎng)保持這兩種家電的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)家電銷售總利潤(rùn)最大的進(jìn)貨方案.

【答案】(1)每臺(tái)空調(diào)的進(jìn)價(jià)為1200元,每臺(tái)電冰箱的進(jìn)價(jià)為1500元;(2)共有5種方案;

(3)當(dāng)100<k<150時(shí),購(gòu)進(jìn)電冰箱38臺(tái),空調(diào)62臺(tái),總利潤(rùn)最大;當(dāng)0<k<100時(shí),購(gòu)進(jìn)電冰箱34臺(tái),空調(diào)66臺(tái),總利潤(rùn)最大,當(dāng)k=100時(shí),無(wú)論采取哪種方案,y1恒為20000元.

【解析】

(1)用9000元購(gòu)進(jìn)電冰箱的數(shù)量與用7200元購(gòu)進(jìn)空調(diào)數(shù)量相等建立方程即可;(2)建立不等式組求出x的范圍,代入即可得出結(jié)論;(3)建立y1=(k﹣100)x+20000,分三種情況討論即可.

(1)設(shè)每臺(tái)空調(diào)的進(jìn)價(jià)為m元,則每臺(tái)電冰箱的進(jìn)價(jià)(m+300)元,

由題意得,,

m=1200,

經(jīng)檢驗(yàn),m=1200是原分式方程的解,也符合題意,

m+300=1500元,

答:每臺(tái)空調(diào)的進(jìn)價(jià)為1200元,每臺(tái)電冰箱的進(jìn)價(jià)為1500元;

(2)由題意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,

,

33≤x≤38,

x為正整數(shù),

x=34,35,36,37,38,

即:共有5種方案;

(3)設(shè)廠家對(duì)電冰箱出廠價(jià)下調(diào)k(0<k<150)元后,這100臺(tái)家電的銷售總利潤(rùn)為y1元,

y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,

當(dāng)100<k<150時(shí),y1x的最大而增大,

x=38時(shí),y1取得最大值,

即:購(gòu)進(jìn)電冰箱38臺(tái),空調(diào)62臺(tái),總利潤(rùn)最大,

當(dāng)0<k<100時(shí),y1x的最大而減小,

x=34時(shí),y1取得最大值,

即:購(gòu)進(jìn)電冰箱34臺(tái),空調(diào)66臺(tái),總利潤(rùn)最大,

當(dāng)k=100時(shí),無(wú)論采取哪種方案,y1恒為20000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形四邊形,它們的面積比為,它們的對(duì)應(yīng)對(duì)角線的比為________,若它們的周長(zhǎng)之差為,則四邊形的周長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,,,的中點(diǎn),點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng);點(diǎn)同時(shí)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng),點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)時(shí)間______秒時(shí),以點(diǎn),,為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD=AB,BAD的平分線交BC于點(diǎn)E,DHAE于點(diǎn)H,連接BH并延長(zhǎng)交CD于點(diǎn)F,連接DEBF于點(diǎn)O,下列結(jié)論:①∠AED=CED;OE=OD;BH=HF;BC﹣CF=2HE;AB=HF,其中正確的有(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形DOBC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,B、D分別在坐標(biāo)軸上,點(diǎn)C的坐標(biāo)為(6,4),反比例函數(shù)y=(x0)的圖象經(jīng)過(guò)線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.

(1)求反比例函數(shù)的解析式;

(2)求△OEF的面積;

(3)設(shè)直線EF的解析式為y=k2x+b,請(qǐng)結(jié)合圖象直接寫出不等式k2x+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過(guò)原點(diǎn)O,直線x軸、y軸分別相交于AB兩點(diǎn).

(1)求出A,B兩點(diǎn)的坐標(biāo);

(2)若有一拋物線的對(duì)稱軸平行于y軸且經(jīng)過(guò)點(diǎn)M,頂點(diǎn)C在圓M上,開(kāi)口向下,且經(jīng)過(guò)點(diǎn)B,求此拋物線的函數(shù)解析式;

(3)設(shè)(2)中的拋物線交軸于D、E兩點(diǎn),在拋物線上是否存在點(diǎn)P,使得S△PDE=S△ABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著春節(jié)臨近,某兒童游樂(lè)場(chǎng)推出了甲、乙兩種消費(fèi)卡,設(shè)消費(fèi)次數(shù)為時(shí),所需費(fèi)用為元,且的函數(shù)關(guān)系如圖所示. 根據(jù)圖中信息,解答下列問(wèn)題;

1)分別求出選擇這兩種卡消費(fèi)時(shí),關(guān)于的函數(shù)表達(dá)式.

2)求出點(diǎn)坐標(biāo).

3)洋洋爸爸準(zhǔn)備元錢用于洋洋在該游樂(lè)場(chǎng)消費(fèi),請(qǐng)問(wèn)選擇哪種消費(fèi)卡劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知雙曲線經(jīng)過(guò)點(diǎn),點(diǎn)是雙曲線第三象限分支上的動(dòng)點(diǎn),過(guò)點(diǎn)軸,過(guò)點(diǎn)軸,垂足分別為,,連接

的值;

的面積為,

①若直線的解析式為,求的值;

②根據(jù)圖象,直接寫出時(shí)的取值范圍;

③判斷直線的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一拱形隧道的輪廓是拋物線如圖,拱高,跨度

建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拱形隧道的拋物線關(guān)系式;

拱形隧道下地平面是雙向行車道(正中間是一條寬的隔離帶),其中的一條行車道能否并排行駛寬,高的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說(shuō)說(shuō)你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案