小明在整個上學途中,他出發(fā)后t分鐘時,他所在的位置與家的距離為s千米,且s與t之間的函數(shù)關系的圖象如圖中的折線段OA-OB所示.則折線段OA-AB所對應的函數(shù)關系式為______.
由題意得
設OA段的正比例函數(shù)關系式為s=kt,
∵點A(12,1)在該函數(shù)圖象上,
∴1=12k,
解得k=
1
12

所以OA段所對應的函數(shù)關系式為s=
1
12
t(0≤t≤12),
AB段所對應的函數(shù)關系式為s=1(12<t≤20)
故答案為:s=
1
12
t(0≤t≤12),s=1(12<t≤20)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

一次函數(shù)y=kx+b的圖象過點(-2,3)和(1,-3),
(1)求k與b的值;(2)判定(-1,1)是否在此直線上?(3)畫出該函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某農戶種植一種經濟作物,總用水量y(米3)與種植時間x(天)之間的函數(shù)圖象如圖所示.填空第(1)小題并解答第(2)、(3)小題
(1)第20天的總用水量為______.
(2)當x≥20時,求y與x之間的函數(shù)關系式.
(3)時間為多少天時,總用水量達到70003

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)的圖象經過點(3,6)與點(
1
2
,-
1
2
),求這個函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線y=2x+10分別交x軸、y軸于A、B兩點,過點N(8,4)的直線分別交x軸、y軸于C、D,CD⊥AB.
(1)求直線CD解析式.
(2)把△AOB沿x軸正方向平移得到△EFG,當點E平移到點C處停止移動,設移動的路程為m,直線CD在EFG內所截得的線段長為L,求L與m的函數(shù)關系式.
(3)在(2)的條件下,若四邊形DEFN為梯形,求梯形DEFN的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

今年我省干旱災情嚴重,甲地急需抗旱用水15萬噸,乙地13萬噸.現(xiàn)有兩水庫決定各調出14萬噸水支援甲、乙兩地抗旱.從A地到甲地50千米,到乙地30千米;從B地到甲地60千米,到乙地45千米
(1)設從A水庫調往甲地的水量為x萬噸,完成下表:
總計
Ax14
B14
總計151328
(2)請設計一個調運方案,使水的調運總量盡可能。ㄕ{運量=調運水的重量×調運的距離,單位:萬噸•千米)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某市采用價格調控的手段達到節(jié)約用水的目的,制定如下用水收費標準:每戶每月用水不超過6m3,水費按a元/m3收費;若超過
6m3,6m3以內的仍按a元/m3收費,超過6m3的部分以b元/m3收費.某戶居民5、6月份用水量和水費如下表:
月份用水量(m3水費(元)
557.5
6927
設該用戶每月用水量為xm3,應交水費y元.
(1)求出a,b的值;
(2)寫出用水量不超過6m3和超過6m3時,y與x之間的函數(shù)關系式;
(3)若該用戶7月份用水量為8m3,他應交多少元水費?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有甲、乙兩家通訊公司,甲公司每月通話(不分通話地點)的收費標準如圖所示;乙公司每月通話的收費標準如圖所示:
乙公司每月的收費標準
月租費本市接聽費本市接打費外市通話費
50元0元/分0.10元/分0.90元/分
(1)觀察圖1,寫出甲公司用戶月通話時間不超過400分鐘時應付的話費金額;
(2)求出甲公司的用戶超過400分鐘后,通話費用y(元)與通話時間t(分)之間的函數(shù)關系式;(寫出解題過程)
(3)王先生由于工作需要,從4月份開始經常外市出差,估計每月各種通話時間的比例是,本地接聽時間:本地撥打時間:外地通話時間=2:1:1,設王先生每月的各種通話時間總和為t(分),通話費用為y(元).你認為t為多少分鐘時,乙公司和甲公司的收費一樣多?請用計算方法說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將長、寬、高分別為a,b,c(a>b>c,單位:cm)的三塊相同的長方體按圖所示的三種方式放入三個底面面直徑為d(d>
a2+b2
),高為h的相同圓柱形水桶中,再向三個水桶內以相同的速度勻速注水,直至注滿水桶為止,水桶內的水深y(cm)與注水時間t(s)的函數(shù)關系如圖所示,則注水速度為(  )
A.30cm2/sB.32cm2/sC.34cm2/sD.40cm2/s

查看答案和解析>>

同步練習冊答案