【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形ABCD是長方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點與原點重合,坐標(biāo)為(0,0)
(1)寫出點B的坐標(biāo);
(2)動點P從點A出發(fā)以每秒3個單位長度的速度向終點B勻速運動,動點Q從點C出發(fā)以每秒4個單位長度的速度沿射線CD方向勻速運動,若P,Q兩點同時出發(fā),設(shè)運動時間為t,當(dāng)t為何值時,PQ∥BC;
(3)在Q的運行過程中,當(dāng)Q運動到什么位置時,使△ADQ的面積為9,求此時Q點的坐標(biāo).
【答案】(1)B(8,6)(2)t為 (3)當(dāng)Q運動到距原點3cm位置時,使△ADQ的面積為9,此時Q點的坐標(biāo)(3,0)或(-3,0)
【解析】
試題(1)根據(jù)點的特點可以直接寫出坐標(biāo);
(2)由平行的位置和移動的距離可以設(shè)出時間t,從而構(gòu)成方程解決;
(3)分在D點左右兩邊兩種情況討論構(gòu)成的三角形,根據(jù)面積求出點的坐標(biāo).
試題解析:(1)∵AB=DC=8 AD=BC=6
∴B(8,6)
(2)運動時間為t秒 則t秒時P(3t,6)Q(8-4t,0)
∵PQ ∥BC 且 BC∥ AO
∴PQ∥A0即y軸
∴ 3t=8-4t
∴t=
∴t=秒時 PQ//BC
(3)∵Q在射線CD方向勻速運動.
Q在0點右側(cè)時Q坐標(biāo)(8-4t,0)
S=AD.DQ
∴9=×6(8-4t)
∴t=
此時8-4t=8-4×=3
∴Q(3,0)
Q在點0左側(cè)時Q(8-4t,0) S=AD×DQ 9=×6×(4t-8)
∴t=
此時8-4t=8-4×=-3
∴Q(-3,0)
∴Q點距原點3個單位時,面積為9
此時Q(3,0)或(-3,0)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4,E是BC上一點,將△CDE沿直線DE折疊后,點C落在點C′處,連接C′E交AD于點F,若BE=2,F(xiàn)為AD的中點,則AD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學(xué)校需要投入多少資金買草皮?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市公交公司為應(yīng)對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,
(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?
(2)若該公司預(yù)計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=10,∠BAC=90°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,連接BE,將BE繞點B順時針旋轉(zhuǎn)90°,得BF,連接AD,BD,AF
(1)如圖①,D、E分別在AC,BC邊上,求證:四邊形ADBF為平行四邊形;
(2)△DEC繞點C逆時針旋轉(zhuǎn),其它條件不變,如圖②,(1)的結(jié)論是否成立?說明理由.
(3)在圖①中,將△DEC繞點C逆時針旋轉(zhuǎn)一周,其它條件不變,問:旋轉(zhuǎn)角為多少度時.四邊形ADBF為菱形?直接寫出旋轉(zhuǎn)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中, 厘米, 厘米,點D為AB的中點.如果點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.當(dāng)點Q的運動速度為_______ 厘米/秒時,能夠在某一時刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是若干個粗細均勻的鐵環(huán)最大限度的拉伸組成的鏈條,已知鐵環(huán)粗0.5厘米,每個鐵環(huán)長4.6厘米,設(shè)鐵環(huán)間處于最大限度的拉伸狀態(tài)
(1)填表:
鐵環(huán)個數(shù) | 1 | 2 | 3 | 4 |
鏈條長(cm) | 4.6 | 8.2 | _____ | ____ |
(2)設(shè)n個鐵環(huán)長為y厘米,請用含n的式子表示y;
(3)若要組成2.17米長的鏈條,至少需要多少個鐵環(huán)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形ABC中,點D在線段AB上,DE∥BC交AC于點E,點F在直線BC上,作直線EF,過點D作直線DH∥AC交直線EF于點H.
(1)在如圖1所示的情況下,求證:∠HDE=∠C;
(2)若三角形ABC不變,D,E兩點的位置也不變,點F在直線BC上運動.
①當(dāng)點H在三角形ABC內(nèi)部時,直接寫出∠DHF與∠FEC的數(shù)量關(guān)系;
②當(dāng)點H在三角形ABC外部時,①中結(jié)論是否依然成立?請在圖2中畫圖探究,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com