【題目】如圖,已知直線l:y1=kx+b分別與x軸、y軸交于A、B兩點(diǎn),與雙曲線y2=(a0,x>0)分別交于D、E兩點(diǎn)若點(diǎn)D的坐標(biāo)為(4,1),點(diǎn)E的坐標(biāo)為(1,4)

(1) 分別直接寫出直線l與雙曲線的解析式:

(2) 若將直線l向下平移m(m>0)個(gè)單位,當(dāng)m為何值時(shí),直線l與雙曲線有且只有一個(gè)交點(diǎn)

(3) 當(dāng)y1<y2時(shí),直接寫出x的取值范圍

【答案】(1)反比例函數(shù)解析式為y=(x>0);直線l的解析式為y=-x+5;(2)當(dāng)m=1時(shí),直線l與雙曲線有且只有一個(gè)交點(diǎn);(3)當(dāng)x<1或x>4時(shí),y1<y2.

【解析】

試題分析:(1)運(yùn)用待定系數(shù)法可分別得到直線l與雙曲線的解析式;

直線l向下平移m(m>0)個(gè)單位得到y(tǒng)=-x+5-m,根據(jù)題意得方程組只有一組解時(shí),化為關(guān)于x的方程得x2+(m-5)x+4=0,則=(m-5)2-4×4=0,解得m1=1,m2=9,當(dāng)m=9時(shí),公共點(diǎn)不在第一象限,所以m=1;

(3)解方程組即可求解.

試題解析:(1)把D(4,1)代入y=得a=1×4=4,

所以反比例函數(shù)解析式為y=(x>0);

設(shè)直線l的解析式為y=kx+t,

把D(4,1),E(1,4)代入得,

解得

所以直線l的解析式為y=-x+5;

直線l向下平移m(m>0)個(gè)單位得到y(tǒng)=-x+5-m,

當(dāng)方程組只有一組解時(shí),直線l與雙曲線有且只有一個(gè)交點(diǎn),

化為關(guān)于x的方程得x2+(m-5)x+4=0,

=(m-5)2-4×4=0,解得m1=1,m2=9,

而m=9時(shí),解得x=-2,故舍去,

所以當(dāng)m=1時(shí),直線l與雙曲線有且只有一個(gè)交點(diǎn);

(3)解方程組得:x1=1,x2=4

故當(dāng)x<1或x>4時(shí),y1<y2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把方程x2﹣4x﹣7=0化成(x﹣m)2=n的形式,則m、n的值是(
A.2,7
B.﹣2,11
C.﹣2,7
D.2,11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在括號(hào)內(nèi)填入適當(dāng)?shù)捻?xiàng):a - 2b + 3c = _______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ab、c為△ABC的三邊,且滿足a2c2b2c2a4b4,則△ABC_____三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫一條線段的垂線,垂足在( )

A. 線段上 B. 線段的端點(diǎn)

C. 線段的延長(zhǎng)線上 D. 以上都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】0的絕對(duì)值是_______,相反數(shù)是_________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABC1D1的邊長(zhǎng)為1,延長(zhǎng)C1D1到A1,以A1C1為邊向右作正方形A1C1C2D2,延長(zhǎng)C2D2到A2,以A2C2為邊向右作正方形A2C2C3D3(如圖所示),以此類推…,若A1C1=2,且點(diǎn)A,D2, D3,…,D10都在同一直線上,則正方形A9C9C10D10的邊長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你寫出一個(gè)無(wú)理數(shù)______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一根筆直的小木棒(記為線段AB),它的正投影為線段CD,則下列各式中,一定成立的是( )

A. AB=CD B. AB≤CD C. AB≥CD D. AB>CD

查看答案和解析>>

同步練習(xí)冊(cè)答案