【題目】如圖,有一座拋物線形拱橋,在正常水位時(shí)水面AB的寬為20米,如果水位上升3米,則水面CD的寬是10米.
(1)建立如圖所示的直角坐標(biāo)系,求此拋物線的解析式;
(2)當(dāng)水位在正常水位時(shí),有一艘寬為6米的貨船經(jīng)過這里,船艙上有高出水面3.6米的長方體貨物(貨物與貨船同寬).問:此船能否順利通過這座拱橋?
【答案】(1)
(2)在正常水位時(shí),此船能順利通過這座拱橋
【解析】
解:(1)設(shè)拋物線解析式為………………………………………1分
設(shè)點(diǎn),點(diǎn)………………………………………………2分
由題意:
解得………………………………………………3分
∴………………………………………………4分
(2)方法一:
當(dāng)時(shí),
∵.6 ………………………………………………5分
∴在正常水位時(shí),此船能順利通過這座拱橋.…………………………………6分
方法二:
當(dāng)時(shí),
∴
∵………………………………………………5分
∴在正常水位時(shí),此船能順利通過這座拱橋.…………………………………6分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy 中,點(diǎn)P是⊙C外一點(diǎn),連接CP交⊙C于點(diǎn)Q,點(diǎn)P關(guān)于點(diǎn)Q的對稱點(diǎn)為P′,當(dāng)點(diǎn)P′在線段CQ上時(shí),稱點(diǎn)P為⊙C“友好點(diǎn)”.已知A(1,0),B(0,2),C(3,3)
(1)當(dāng)⊙O的半徑為1時(shí),
①點(diǎn)A,B,C中是⊙O“友好點(diǎn)”的是 ;
②已知點(diǎn)M在直線y=﹣x+2 上,且點(diǎn)M是⊙O“友好點(diǎn)”,求點(diǎn)M的橫坐標(biāo)m的取值范圍;
(2)已知點(diǎn)D,連接BC,BD,CD,⊙T的圓心為T(t,﹣1),半徑為1,若在△BCD上存在一點(diǎn)N,使點(diǎn)N是⊙T“友好點(diǎn)”,求圓心T的橫坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點(diǎn)A為切點(diǎn),BP與⊙O交于點(diǎn)C,點(diǎn)D是AP的中點(diǎn),連結(jié)CD.
(1)求證:CD是⊙O的切線;
(2)若AB=2,∠P=30°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三根同樣的繩子AA1、BB1、CC1穿過一塊木板,姐妹兩人分別站在木板的左、右兩側(cè),每次各自選取本側(cè)的一根繩子,每根繩子被選中的機(jī)會相等.
(1)問:“姐妹兩人同時(shí)選中同一根繩子”這一事件是 事件,概率是 ;
(2)在互相看不見的條件下,姐姐先將左側(cè)A、C兩個繩端打成一個連結(jié),則妹妹從右側(cè)A1、B1、C1三個繩端中隨機(jī)選兩個打一個結(jié)(打結(jié)后仍能自由地通過木孔);請求出“姐姐抽動繩端B,能抽出由三根繩子連結(jié)成一根長繩”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,0),對稱軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:A、P、B、C是⊙O上的四個點(diǎn),且∠APC=∠CPB=60°
(1)判定△ABC的形狀,證明你的結(jié)論;
(2)若⊙O的半徑為2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學(xué)興趣小組對本班同學(xué)一天飲用飲品的情況進(jìn)行了調(diào)查,大致可分為四種:
A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.
根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個統(tǒng)計(jì)圖(如圖),根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)請你補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在扇形統(tǒng)計(jì)圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);
(3)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在自帶白開水的5名同學(xué)(男生2人,女生3人)中隨機(jī)抽取2名同學(xué)擔(dān)任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形ABCD是平行四邊形,兩邊AB,AD的長是關(guān)于x的方程的兩個實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?
(2)求出此時(shí)菱形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(1,0),直線與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在軸上.
(1)求m的值及這個二次函數(shù)的解析式;
(2)若P(,0) 是軸上的一個動點(diǎn),過P作軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點(diǎn).
①當(dāng)0<< 3時(shí),求線段DE的最大值;
②若直線AB與拋物線的對稱軸交點(diǎn)為N,問是否存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com