【題目】已知平行四邊形ABCD中,N是邊BC上一點(diǎn),延長(zhǎng)DN、AB交于點(diǎn)Q,過A作AM⊥DN于點(diǎn)M,連接AN,則AD⊥AN.
(1)如圖①,若tan∠ADM=,MN=3,求BC的長(zhǎng);
(2)如圖②,過點(diǎn)B作BH∥DQ交AN于點(diǎn)H,若AM=CN,求證:DM=BH+NH.
【答案】(1)BC=;(2)見解析.
【解析】
(1)如圖①中,設(shè)AM=3k,DM=4k,則AD=5k,由△ADM∽△NDA,可得AD2=DMAN,由此構(gòu)建方程即可解決問題.
(2)如圖②中,連接CH,在DM上取一點(diǎn)K,使得DK=BH.證明△ADK≌△CBH(SAS),推出AK=CH,再證明Rt△AMK≌Rt△CNH(HL),推出MK=HN即可解決問題.
(1)解:如圖①中,
∵AM⊥DN,
∴∠AMD=90°,
∵tan∠ADM==,
∴可以假設(shè)AM=3k,DM=4k,則AD=5k,
∵AD⊥AN,
∴∠DAN=90°=∠AMD,
∵∠ADM=∠ADN,
∴△ADM∽△NDA,
∴AD2=DMAN,
∴(5k)2=4k(4k+3),
解得k=,
∴AD=,
∵四邊形ABCD是平行四邊形,
∴BC=AD=.
(2)證明:如圖②中,連接CH,在DM上取一點(diǎn)K,使得DK=BH.
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴∠ADK=∠BNQ,
∵BH∥DQ,
∴∠CBH=∠BNQ,
∴∠ADK=∠CBH,
∵DK=BH,DA=BC,
∴△ADK≌△CBH(SAS),
∴AK=CH,
∵AM⊥DQ,AN⊥AD,AD∥BC,
∴AN⊥BC,
∴∠AMK=∠CNH=90°,
∵AM=CN,
∴Rt△AMK≌Rt△CNH(HL),
∴MK=NH,
∴DM=DK+MK=BH+HN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,BD⊥AC于D,若cos∠BAD=,BD=,則CD的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某飛機(jī)場(chǎng)東西方向的地面l上有一長(zhǎng)為1 km的飛機(jī)跑道MN(如圖),在跑道MN的正西端14.5千米處有一觀察站A.某時(shí)刻測(cè)得一架勻速直線降落的飛機(jī)位于點(diǎn)A的北偏西30°,且與點(diǎn)A相距15千米的B處;經(jīng)過1分鐘,又測(cè)得該飛機(jī)位于點(diǎn)A的北偏東60°,且與點(diǎn)A相距5千米的C處.
(1)該飛機(jī)航行的速度是多少千米/小時(shí)?(結(jié)果保留根號(hào))
(2)如果該飛機(jī)不改變航向繼續(xù)航行,那么飛機(jī)能否降落在跑道MN之間?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,是真命題的是( )
A.將函數(shù)y=x+1向右平移2個(gè)單位后所得函數(shù)的解析式為y=x
B.若一個(gè)數(shù)的平方根等于其本身,則這個(gè)數(shù)是0和1
C.對(duì)函數(shù)y=,其函數(shù)值y隨自變量x的增大而增大
D.直線y=3x+1與直線y=﹣3x+2一定互相平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+b與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,OB=4,sin∠CBO=.
(1)求直線AB的解析式;
(2)直線AB與反比例函數(shù)y=相交于C、D兩點(diǎn)(C點(diǎn)在第一象限),求S△DOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 為等腰直角三角形,∠ACB=90°,點(diǎn) M 為 AB 邊的中點(diǎn),點(diǎn) N 為射線 AC 上一點(diǎn),連接 BN,過點(diǎn) C 作 CD⊥BN 于點(diǎn) D,連接 MD,作∠BNE=∠BNA,邊 EN 交射線 MD 于點(diǎn) E,若 AB=20,MD=14,則 NE 的長(zhǎng)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】5G網(wǎng)絡(luò)是第五代移動(dòng)通信網(wǎng)絡(luò),它將推動(dòng)我國(guó)數(shù)字經(jīng)濟(jì)發(fā)展邁上新臺(tái)階. 據(jù)預(yù)測(cè),2020年到2030年中國(guó)5G直接經(jīng)濟(jì)產(chǎn)出和間接經(jīng)濟(jì)產(chǎn)出的情況如下圖所示.
根據(jù)上圖提供的信息,下列推斷不合理的是( )
A.2030年5G間接經(jīng)濟(jì)產(chǎn)出比5G直接經(jīng)濟(jì)產(chǎn)出多4.2萬(wàn)億元
B.2020年到2030年,5G直接經(jīng)濟(jì)產(chǎn)出和5G間接經(jīng)濟(jì)產(chǎn)出都是逐年增長(zhǎng)
C.2030年5G直接經(jīng)濟(jì)產(chǎn)出約為2020年5G直接經(jīng)濟(jì)產(chǎn)出的13倍
D.2022年到2023年與2023年到2024年5G間接經(jīng)濟(jì)產(chǎn)出的增長(zhǎng)率相同
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別為、、.
(1)點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為______;
(2)將繞著點(diǎn)順時(shí)針旋轉(zhuǎn),畫出旋轉(zhuǎn)后得到的;
(3)在(2)中,求邊所掃過區(qū)域的面積是多少?(結(jié)果保留).
(4)若、、三點(diǎn)的橫坐標(biāo)都加3,縱坐標(biāo)不變,圖形的位置發(fā)生怎樣的變化?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線經(jīng)過點(diǎn)(1,0),且對(duì)稱軸為直線,其部分圖象如圖所示.對(duì)于此拋物線有如下四個(gè)結(jié)論:①<0; ②;③9a-3b+c=0;④若,則時(shí)的函數(shù)值小于時(shí)的函數(shù)值.其中正確結(jié)論的序號(hào)是( )
A.①③B.②④C.②③D.③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com