【題目】如圖,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(-1,3)、(-4,1)、(-21),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標(biāo)是(12),則點A1C1的坐標(biāo)分別是(

A.A14,4),C13,2B.A13,3),C12,1

C.A143),C12,3D.A134),C122

【答案】A

【解析】

根據(jù)點B-4,1)的對應(yīng)點B1的坐標(biāo)是(1,2)知,需將△ABC向右移5個單位、上移1個單位,據(jù)此根據(jù)平移的定義和性質(zhì)解答可得.

解:由點B(-4,1)的對應(yīng)點B1的坐標(biāo)是(12)知,需將△ABC向右移5個單位、上移1個單位,則點A(-1,3)的對應(yīng)點A1的坐標(biāo)為(4,4)、點C(-21)的對應(yīng)點C1的坐標(biāo)為(3,2),

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為和諧分式.如: ,則和諧分式

(1)下列分式中,屬于和諧分式的是_____(填序號);

;②;③;④;

(2)和諧分式化成一個整式與一個分子為常數(shù)的分式的和的形式為:_______(要寫出變形過程);

(3)應(yīng)用:先化簡,并求x取什么整數(shù)時,該式的值為整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,D是線段BC的延長線上一點,以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.

(1)如圖1,點D在線段BC的延長線上移動,若∠BAC=30°,則∠DCE=   

(2)設(shè)∠BAC=α,∠DCE=β:

如圖1,當(dāng)點D在線段BC的延長線上移動時,αβ之間有什么數(shù)量關(guān)系?請說明理由;

當(dāng)點D在直線BC上(不與B、C重合)移動時,αβ之間有什么數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一枚棋子放在⊙O上的點A處,通過摸球來確定該棋子的走法.
其規(guī)則如下:在一只不透明的口袋中,裝有3個標(biāo)號分別為1,2,3的相同小球.充分?jǐn)噭蚝髲闹须S機摸出1個,記下標(biāo)號后放回袋中并攪勻,再從中隨機摸出1個,若摸出的兩個小球標(biāo)號之積是m,就沿著圓周按逆時針方向走m步(例如:m=1,則A﹣B;若m=6,則A﹣B﹣C﹣D﹣A﹣B﹣C).用列表或樹狀圖,分別求出棋子走到A、B、C、D點的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD中,BC=2CD=2a,點E在邊CD上,在矩形ABCD的左側(cè)作矩形ECGF,使CG=2GF=2b,連接BD,CF,連結(jié)AF交BD于點H.

(1)求證:BD∥CF;
(2)求證:H是AF的中點;
(3)連結(jié)CH,若HC⊥BD,求a:b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了增強學(xué)生體質(zhì),全面實施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對不同口味牛奶的喜好,對全校訂購牛奶的學(xué)生進行了隨機調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計圖:

(1)本次被調(diào)查的學(xué)生有   名;

(2)補全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計圖中所占圓心角的度數(shù);

(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),E是直線AB、CD內(nèi)部一點,AB∥CD,連接EA、ED.

(1)探究:

①若∠A=30°,∠D=40°,則∠AED等于多少度?

②若∠A=20°,∠D=60°,則∠AED等于多少度?

③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關(guān)系,并證明你的結(jié)論.

(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點,猜想:∠PEB、∠PFC、∠EPF之間的關(guān)系.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于 的一元二次方程 的兩個根,且OA>OB

(1)求cos∠ABC的值。
(2)若E為x軸上的點,且 ,求出點E的坐標(biāo),并判斷△AOE與△DAO是否相似?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)解方程:(x+1)2=9;
(2)解方程:x2﹣4x+2=0.

查看答案和解析>>

同步練習(xí)冊答案