【題目】如圖,正方形紙片ABCD的邊長為12E,F分別是邊AD,BC上的點(diǎn),將正方形紙片沿EF折疊,使得點(diǎn)A落在CD邊上的點(diǎn)A處,此時(shí)點(diǎn)B落在點(diǎn)B處.已知折痕EF=13,則AE的長等于_________

【答案】

【解析】過點(diǎn)FFGAD,垂足為G,連接AA,在GEF中,由勾股定理可求得EG=5,軸對(duì)稱的性質(zhì)可知AAEF,由同角的余角相等可證明∠EAH=GFE,從而可證明ADA≌△FGE,故此可知GE=DA′=5,最后在EDA利用勾股定理列方程求解即可.

解:過點(diǎn)FFGAD,垂足為G,連接AA′.

RtEFG,EG=,

∵軸對(duì)稱的性質(zhì)可知AAEF,

∴∠EAH+AEH=90.

FGAD

∴∠GEF+EFG=90.

∴∠DAA′=GFE.

GEFDAA中,

∴△GEF≌△DAA.

DA′=EG=5.

設(shè)AE=x,由翻折的性質(zhì)可知EA′=x,則DE=12x.

RtEDA,由勾股定理得:AE2=DE2+AD2,x2=(12x)2+52.

解得:x=.

故答案為: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),得到矩形AEFG,E點(diǎn)正好落在邊CD上,連接BE,BG,且BGAEP.

1)求證:CBE=BAE;

(2)求證:PG=PB;

3)若AB=,BC=3,求出BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=2a,∠AMN=40°,點(diǎn)B為弧AN的中點(diǎn),點(diǎn)P是直徑MN上的一個(gè)動(dòng)點(diǎn),則 PA+PB的最小值為_____.(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(操作發(fā)現(xiàn))三角形三個(gè)頂點(diǎn)與重心的連線段,將該三角形面積三等分.

1)如圖①:中,中線、相交于點(diǎn).求證:.

(提出問題)如圖②,探究在四邊形中,邊上任意一點(diǎn),的面積之間的關(guān)系.

2)為了解決這個(gè)問題,我們可以先從一些簡單的、特殊的情形入手:

如圖③,當(dāng)時(shí),探求之間的關(guān)系,寫出求解過程.

(問題解決)

3)推廣,當(dāng)表示正整數(shù))時(shí),直接寫出之間的關(guān)系:____________.

4)一般地,當(dāng)時(shí),之間的關(guān)系式為:____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)B出發(fā),沿對(duì)角線BD向點(diǎn)D勻速運(yùn)動(dòng),速度為4cm/s,過點(diǎn)P作PQ⊥BD交BC于點(diǎn)Q,以PQ為一邊作正方形PQMN,使得點(diǎn)N落在射線PD上.點(diǎn)O從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),速度為3cm/s,以O(shè)為圓心,1cm半徑作⊙O.點(diǎn)P與點(diǎn)D同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為t(單位:s) (0≤t≤).

(1)如圖1,連接DQ,若DQ平分∠BDC,則t的值為   s;

(2)如圖2,連接CM,設(shè)△CMQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;

(3)在運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),⊙O與MN第一次相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋中裝有紅、黃、白三種顏色的球共100個(gè),它們除顏色外都相同,其中黃球的個(gè)數(shù)是白球個(gè)數(shù)的2倍少5個(gè),已知從袋中摸出一個(gè)球是紅球的概率是.

(1)求袋中紅球的個(gè)數(shù);

(2)求從袋中摸出一個(gè)球是白球的概率;

(3)取走10個(gè)球(其中沒有紅球)后,求從剩余的球中摸出一個(gè)球是紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】說明:在解答“結(jié)論應(yīng)用”時(shí),從(A),(B)兩題中仸選一題做答

問題探究

啟知學(xué)習(xí)小組在課外學(xué)習(xí)時(shí),發(fā)現(xiàn)了這樣一個(gè)問題:如圖(1),在四邊形ABCD中,連接AC,BD,如果ABC與BCD的面積相等,那么ADBC在小組交流時(shí),他們?cè)趫D(1)中添加了如圖所示的輔助線,AEBC于點(diǎn)E,DFBC于點(diǎn)F請(qǐng)你完成他們的證明過程

結(jié)論應(yīng)用

在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過A(1,4),B(a,b兩點(diǎn),過點(diǎn)AACx軸于點(diǎn)C,過點(diǎn)BBDy軸于點(diǎn)D

(A)(1)求反比例函數(shù)的表達(dá)式;

(2)如圖(2),已知b=1,AC,BD相交于點(diǎn)E,求證:CDAB

(B)(1)求反比例函數(shù)的表達(dá)式;

(2)如圖(3),若點(diǎn)B在第三象限,判斷并證明CD與AB的位置關(guān)系

我選擇:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=的圖象如圖所示,則以下結(jié)論:①m<0;②在每個(gè)分支上y隨x的增大而增大;③若點(diǎn)A(-1,a),點(diǎn)B(2,b)在圖象上,則a <b;④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(-x,y)也在圖象上.其中正確的個(gè)數(shù)為(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過M作MHx軸于點(diǎn)H,且tanAHO=2.

(1)求k的值;

(2)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PM+PN最小?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案