22、如圖,已知E是平行四邊形ABCD的邊BC上的一點,F(xiàn)是BC延長線上一點,且BE=CF,BD與AE相交于點G.
求證:(1)△ABE≌△DCF;
(2)BE•DF=BF•GE
分析:1、由平行四邊形的性質(zhì)知,AB=CD,∠ABE=∠FCD,又有BE=CF,故要由SAS得到△ABE≌△DCF,
2、由△ABE≌△DCF,可得∠AEB=∠F?AE∥DF?△BGE△BDF?BE:BF=GE:DF?BE•DF=GE•BF.
解答:證明:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,∠ABE=∠FCD,
又∵BE=CF,
∴△ABE≌△DCF.

(2)∵△ABE≌△DCF,
∴∠AEB=∠F.
∴AE∥DF.
∴△BGE∽△BDF.
∴BE:BF=GE:DF,即:BE•DF=GE•BF.
點評:本題利用了平行四邊形的性質(zhì),全等三角形和相似三角形的判定和性質(zhì),平行線的性質(zhì)求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

19、如圖,已知平行四邊形ABCD中,E是AB邊的中點,DE交AC于點F,AC、DE把它分成的四部分的面積分別為S1S2S3S4,下面結(jié)論:
①只有一對相似三角形
②EF:ED=1:2
③S1:S2:S3:S4=1:2:4:5
其中正確的結(jié)論是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(1,0),B(6,0)和C(0,4 )三個點.
(1)求拋物線的解析式;
(2)設(shè)點E(m,n)是拋物線上一個動點,且位于第四象限,四邊形OEBF是以O(shè)B為對角線的平行四邊形,求四邊形OEBF的面積S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當四邊形OEBF的面積為24時,請判斷四邊形OEBF是否為菱形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線l1∥l2∥l3∥l4∥l5,相鄰兩條平行直線間的距離相等且為1,如果四邊形ABCD的四個頂點在平行直線上,∠BAD=90°且AB=2AD,DC⊥l4,則四邊形ABCD的面積是
9
9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點,B是拋物線m上的動點(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關(guān)于x軸對稱,以AC為對角線的平行四邊形ABCD的第四個頂點為D.
(1)求證:點D一定在拋物線n上.
(2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個矩形符合條件,則求此矩形的面積);若不能為矩形,請說明理由.
(3)若(2)中過A、B、C、D的圓交y軸于E、F,而P是弧CF上一動點(不包括C、F兩點),連接AP交y軸于N,連接EP交x軸于M.當P在運動時,四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是2,如果正方形ABCD的四個頂點分別在四條直線上,則正方形邊長的值為
2
5
2
5

查看答案和解析>>

同步練習冊答案