已知直線y=2x+1.
(1)求已知直線與y軸交點(diǎn)A的坐標(biāo);
(2)若直線y=kx+b與已知直線關(guān)于y軸對(duì)稱,求k與b的值.
分析:(1)求直線與y軸的交點(diǎn)坐標(biāo),令交點(diǎn)的橫坐標(biāo)為0即可;
(2)先求出直線y=2x+1與兩坐標(biāo)軸的交點(diǎn)(0,1),(-
,0),因?yàn)閮芍本關(guān)于y軸對(duì)稱,所以兩直線都過(guò)點(diǎn)(0,1),它們與x軸的交點(diǎn)橫坐標(biāo)互為相反數(shù),從而可知所求直線過(guò)點(diǎn)(0,1),(
,0),進(jìn)而利用待定系數(shù)法,通過(guò)解方程組,即可求出答案.
解答:解:(1)當(dāng)x=0時(shí),y=1,
所以直線y=2x+1與y軸交點(diǎn)A的坐標(biāo)為(0,1);
(2)對(duì)于直線y=2x+1,
當(dāng)x=0時(shí),y=1;當(dāng)y=0時(shí),x=-
,
即直線y=2x+1與兩坐標(biāo)軸的交點(diǎn)分別是(0,1),(-
,0),
∵兩直線關(guān)于y軸對(duì)稱
∴直線y=kx+b過(guò)點(diǎn)(0,1),(
,0),
所以
,
∴
.
所以k=-2,b=1.
點(diǎn)評(píng):此類題目結(jié)合軸對(duì)稱出現(xiàn),體現(xiàn)了數(shù)形結(jié)合的思想,需找出幾對(duì)對(duì)應(yīng)點(diǎn)的坐標(biāo),再利用待定系數(shù)法解決問(wèn)題.