精英家教網(wǎng)如圖,已知矩形DEFG內接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 
分析:作輔助線,作AM⊥BC于M,交DG于N,根據(jù)△ADG∽△ABC得出對應邊成比例,再設DE=x,根據(jù)矩形面積得DG,又因為∠BAC=90°,AB=6cm,AC=8cm,求得AM,再將①式化簡即可.
解答:精英家教網(wǎng)解:如圖,作AM⊥BC于M,交DG于N,
在矩形DEFG中,DG∥BC,
∴△ADG∽△ABC,
AN
AM
=
DG
BC
①,
設DE=x,
S矩DEFG=DE•DG=
45
4

∴DG=
45
4x
cm

又∵∠BAC=90°,AB=6cm,AC=8cm,
∴BC=
AB2+AC2
=10cm
,
S△ABC=
1
2
BC•AM=
1
2
AB•AC
,
∴AM=
AB•AC
BC
=
24
5
,
AN=AM-x=
24
5
-x
,
∴①式可化為
24
5
-x
24
5
=
45
4x
10

∴5x2-24x+27=0,解得x1=3,x2=1
4
5

∴DE長為3cm或1
4
5
cm
,
當DE=3cm時,DG=3
3
4
cm
,
當DG=
9
5
cm
時,DG=6
1
4
cm

故答案為:3
3
4
或6
1
4
cm.
點評:此題涉及到的知識點較多,有相似三角形的判定與性質,平行線的性質,三角形的面積.勾股定理,矩形的性質等,綜合性較強,有一定的難度,是一道難題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC和△DEF是兩個邊長都為1cm的等邊三角形,且B、D、C、E都在同一直線精英家教網(wǎng)上,連接AD及CF.
(1)求證:四邊形ADFC是平行四邊形;
(2)若BD=0.3cm,△ABC沿著BE的方向以每秒1cm的速度運動,設△ABC運動時間為t秒,
①當t為何值時,?ADFC是菱形?請說明你的理由;
②?ADFC有可能是矩形嗎?若可能,求出t的值及此矩形的面積;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC和△DEF是兩個邊長都為10cm的等邊三角形,且B、D、C、E都在同一直線上精英家教網(wǎng),連接AD、CF.
(1)求證:四邊形ADFC是平行四邊形;
(2)若BD=3cm,△ABC沿著BE的方向以每秒1cm的速度運動,設△ABC運動時間為t秒,
①當t為何值時,?ADFC是菱形?請說明你的理由;
②?ADFC有可能是矩形嗎?若可能,求出t的值及此矩形的面積;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD,E為AD上一點,F(xiàn)為CD上一點,若將矩形沿BE折疊,點A恰與點F重合,且△DEF為等腰三角形,DE=1,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知矩形ABCD,E為AD上一點,F(xiàn)為CD上一點,若將矩形沿BE折疊,點A恰與點F重合,且△DEF為等腰三角形,DE=1,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省競賽題 題型:解答題

如圖,已知矩形ABCD,E為AD上一點,F(xiàn)為CD上一點,若將矩形沿BE折疊,點A恰與點F重合,且△DEF為等腰三角形,DE=1,求矩形ABCD的面積

查看答案和解析>>

同步練習冊答案