【題目】如圖,下面是利用尺規(guī)作∠AOB的角平分線OC的作法:

①以點O為圓心,任意長為半徑作弧,交OA、OB于點D,E;

②分別以點D,E為圓心,以大于DE的長為半徑作弧,兩弧在∠AOB內(nèi)部交于點C;

③作射線OC,則射線OC就是∠AOB的平分線.

以上用尺規(guī)作角平分線時,用到的三角形全等的判定方法是( 。

A. SSS B. SAS

C. ASA D. AAS

【答案】A

【解析】

根據(jù)作圖的過程知道:OE=OD,OC=OC,CE=CD,所以由全等三角形的判定定理SSS可以證得△EOC≌△DOC.

如圖,連接EC、DC.

根據(jù)作圖的過程知,

在△EOC與△DOC中,

∵OE=OD,OC=OC,CE=CD,

∴△EOC≌△DOC(SSS).

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,l1和l2分別是走私船和我公安快艇航行路程與時間的函數(shù)圖象,請結(jié)合圖象解決下列問題:

(1)在剛出發(fā)時,我公安快艇距走私船多少海里?

(2)計算走私船與公安艇的速度分別是多少?

(3)求出l1,l2的解析式.

(4)問6分鐘時,走私船與我公安快艇相距多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,將△ABC繞點B順時針旋轉(zhuǎn)60°,得到△BDE,連接DCAB于點F,則△ACF與△BDF的周長之和為 ___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4)
(1)請畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2 , 請在y軸右側(cè)畫出△A2B2C2 , 并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過原點O,頂點為A(1,1),且與直線y=x﹣2交于B,C兩點.
(1)求拋物線的解析式及點C的坐標(biāo);
(2)求證:△ABC是直角三角形;
(3)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O(shè),M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC=90°,AB=DB,EB=CB,M,N分別是AE,CD的中點.

(1)求證:△ABM≌△DBN;

(2)試探索BM和BN的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AQ=PQ,PR=PS,PRABRPSACS,則三個結(jié)論:①AS=ARQPAR,③△BPR≌△QPS一定正確的是( )

A. 全部正確 B. 僅①和②正確 C. 僅①正確 D. 僅①和③正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=3,BC=4,點OBC中點,將ABC繞點O旋轉(zhuǎn)得AB' C,則在旋轉(zhuǎn)過程中點A、C兩點間的最大距離是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1.請同學(xué)們利用網(wǎng)格線進(jìn)行畫圖:

(1)在圖1中,畫一個頂點為格點、面積為5的正方形;

(2)在圖2中,已知線段AB、CD,畫線段EF,使它與AB、CD組成軸對稱圖形;(要求畫出所有符合題意的線段)

(3)在圖3中,找一格點D,滿足:CB、CA的距離相等;到點A、C的距離相等.

查看答案和解析>>

同步練習(xí)冊答案