【題目】如圖,在⊙O上依次有A、B、C三點(diǎn),BO的延長(zhǎng)線交⊙O于E,,過(guò)點(diǎn)C作CD∥AB交BE的延長(zhǎng)線于D,AD交⊙O于點(diǎn)F.
(1)求證:四邊形ABCD是菱形;
(2)連接OA、OF,若∠AOF=3∠FOE且AF=3,求的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)先根據(jù)圓的性質(zhì)得:∠CBD=∠ABD,由平行線的性質(zhì)得:∠ABD=∠CDB,根據(jù)直徑和等式的性質(zhì)得:,,由一組對(duì)邊平行且相等可得四邊形ABCD是平行四邊形,由AB=BC可得結(jié)論;
(2)先設(shè)∠FOE=x,則∠AOF=3x,根據(jù)∠ABC+∠BAD=180°,列方程得:4x+2x+ (180-3x)=180,求出x的值,接著求所對(duì)的圓心角和半徑的長(zhǎng),根據(jù)弧長(zhǎng)公式可得結(jié)論.
(1)證明:∵,
∴∠CBD=∠ABD,
∵CD∥AB,
∴∠ABD=∠CDB,
∴∠CBD=∠CDB,
∴CB=CD,
∵BE是⊙O的直徑,
∴,
∴AB=BC=CD,
∵CD∥AB,
∴四邊形ABCD是菱形;
(2)∵∠AOF=3∠FOE,
設(shè)∠FOE=x,則∠AOF=3x,
∠AOD=∠FOE+∠AOF=4x,
∵OA=OF,
∴∠OAF=∠OFA=(180﹣3x)°,
∵OA=OB,
∴∠OAB=∠OBA=2x,
∴∠ABC=4x,
∵BC∥AD,
∴∠ABC+∠BAD=180°,
∴4x+2x+(180﹣3x)=180,
x=20°,
∴∠AOF=3x=60°,∠AOE=80°,
∴∠COF=80°×2﹣60°=100°,
∵OA=OF,
∴△AOF是等邊三角形,
∴OF=AF=3,
∴的長(zhǎng)==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過(guò)?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2=的圖象交于點(diǎn)A(1,2)和B(﹣2,m).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)請(qǐng)直接寫出y1≥y2時(shí)x的取值范圍;
(3)過(guò)點(diǎn)B作BE∥x軸,AD⊥BE于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若∠DAC=30°,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)二次函數(shù)的對(duì)稱軸是x=1,圖象最低點(diǎn)P的縱坐標(biāo)是﹣8,圖象過(guò)(﹣2,10)且與x軸交于A,B與y軸交于C.求:
(1)這個(gè)二次函數(shù)的解析式;
(2)△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線交軸的負(fù)半軸于點(diǎn).點(diǎn)是軸正半軸上一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)恰好落在拋物線上.過(guò)點(diǎn)作軸的平行線交拋物線于另一點(diǎn).若點(diǎn)的橫坐標(biāo)為1,則的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過(guò)點(diǎn)P(﹣3,1),對(duì)稱軸是經(jīng)過(guò)(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過(guò)點(diǎn)P,與x軸相交于點(diǎn)A,與二次函數(shù)的圖象相交于另一點(diǎn)B,點(diǎn)B在點(diǎn)P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.
(3)直接寫出y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACC′是由△ABB′經(jīng)過(guò)位似變換得到的
(1)求出△ACC′與△ABB′的相似比,并指出它們的位似中心;
(2)△AEE′是△ABB′的位似圖形嗎?如果是,求相似比;如果不是說(shuō)明理由;
(3)如果相似比為3,那么△ABB′的位似圖形是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017湖北省鄂州市)小明想要測(cè)量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達(dá)A處,測(cè)得樹頂端E的仰角為30°,他又繼續(xù)走下臺(tái)階到達(dá)C處,測(cè)得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測(cè)得食堂樓頂N的仰角為45°.已知A點(diǎn)離地面的高度AB=2米,∠BCA=30°,且B、C、D三點(diǎn)在同一直線上.
(1)求樹DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com