【題目】如圖,在中,,以點O為圓心的經(jīng)過AB的中點C,連接OC,直線AO與相交于點E,D,OB交于點F,P是的中點,連接CE,CF,BP.
求證:AB是的切線;
若,則
當(dāng)______時,四邊形OECF是菱形;
當(dāng)______時,四邊形OCBP是正方形
【答案】(1)證明見解析(2)①當(dāng)時,四邊形OECF是菱形②當(dāng)時,四邊形OCBP是正方形
【解析】
(1)利用等腰三角形的性質(zhì)得,然后根據(jù)切線的判定定理得到結(jié)論;
(2)①根據(jù)菱形的判定方法,當(dāng)時,四邊形OECF為菱形,則可判斷為等邊三角形,所以,然后根據(jù)含30°的直角三角形三邊的關(guān)系可計算出此時AC的長;
②利用正方形的判定方法,當(dāng),時,四邊形OCBP為正方形,則根據(jù)正方形的性質(zhì)計算出此時BC的長,從而得到AC的長.
(1)證明:,點C為AB的中點,
,
是的切線;
(2)①當(dāng)時,四邊形OECF為菱形,
此時為等邊三角形,
,
,
即當(dāng)時,四邊形OECF是菱形;
②當(dāng),時,四邊形OCBP為正方形,
此時,
即當(dāng)時,四邊形OCBP是正方形.
故答案為,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,AD是的角平分線且AD把△ABC分成面積為3:7的兩部分(AC<AB),AC=5,則AB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點和.
求一次函數(shù)和反比例函數(shù)的表達式;
請直接寫出時,x的取值范圍;
過點B作軸,于點D,點C是直線BE上一點,若,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某公路檢測中心在一事故多發(fā)地帶安裝了一個測速儀,檢測點設(shè)在距離公路10m的A處,測得一輛汽車從B處行駛到C處所用的時間為0.9秒.已知∠B=30°,∠C=45°
(1)求B,C之間的距離;(保留根號)
(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,3)且AO=BO,∠AOB=90°則點B的坐標(biāo)為( 。
A.(2,3)B.(-3,2)C.(-3,-2)D.(-2,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】M(1,a)是一次函數(shù)y=3x+2與反比例函數(shù)y=圖象的公共點,若將一次函數(shù)y=3x+2的圖象向下平移4個單位,則它與反比例函數(shù)圖象的交點坐標(biāo)為_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車的功率P為一定值,汽車行駛時的速度v(m/s)與它所受的牽引力F(N)之間的函數(shù)關(guān)系式如圖所示.
(1)這輛汽車的功率是多少?請寫出這一函數(shù)的表達式;
(2)當(dāng)它所受的牽引力為1200 N時,汽車的速度為多少千米/時?
(3)如果限定汽車的速度不超過30 m/s,則F在什么范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校學(xué)生會發(fā)現(xiàn)同學(xué)們就餐時剩余飯菜較多,浪費嚴重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動的重要性,校學(xué)生會在某天午餐后,隨機調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖。
(1)這次被調(diào)查的同學(xué)共有 名;
(2)把條形統(tǒng)計圖補充完整;
(3)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以供200人用一餐。據(jù)此估算,該校18000名學(xué)生一餐浪費的食物可供多少人食用一餐?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com