【題目】四邊形中,,,在、上分別找一點、,使三角形周長最小時,則的度數(shù)為( )
A. B. C. D.
【答案】C
【解析】
延長AB到A′使得BA′=AB,延長AD到A″使得DA″=AD,連接A′A″與BC、CD分別交于點M、N,此時△AMN周長最小,推出∠AMN+∠ANM=2(∠A′+∠A″)即可解決.
延長AB到A′使得BA′=AB,延長AD到A″使得DA″=AD,連接A′A″與BC、CD分別交于點M、N,
∵∠ABC=∠ADC=90°,
∴A、A′關(guān)于BC對稱,A、A″關(guān)于CD對稱,
此時△AMN的周長最小,
∵BA=BA′,MB⊥AB,
∴MA=MA′,同理:NA=NA″,
∴∠A′=∠MAB,∠A″=∠NAD,
∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,
∴∠AMN+∠ANM=2(∠A′+∠A″),
∵∠BAD=130°,
∴∠A′+∠A″=180°∠BAD=50°
∴∠AMN+∠ANM=2×50°=100°.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,已知AB=AC,D是AC上的一點,CD=9,BC=15,BD=12.
(1)證明:△BCD是直角三角形.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=ax2+bx+c如圖所示,下列四個結(jié)論: ①abc<0;②b﹣2a<0;③a﹣b+c<0;④b2﹣4ac>0.
其中正確結(jié)論的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利過程.下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關(guān)系(即前t個月的利潤總和s和t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)由已知圖象上的三點坐標(biāo),求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤可達到30萬元;
(3)求第8個月公司所獲利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=4,BC=6,∠B=60°,將△ABC沿著射線BC 的方向平移 2 個單位后,得到△△A′B′C′,連接 A′C,則△A′B′C 的周長為__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,、的垂直平分線相交于三角形內(nèi)一點,下列結(jié)論中,錯誤的是( )
A. 點在的垂直平分線上
B. 、、都是等腰三角形
C.
D. 點到、、的距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A( , )和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標(biāo)為(3, ),點C的坐標(biāo)為(,0),點P為斜邊OB上的一個動點,則PA+PC的最小值為( )
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個房間供游客住宿,當(dāng)每個房間的房價為每天180元時,房間會全部住滿.當(dāng)每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于340元.設(shè)每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com