【題目】如圖,△ABC中,AC=BC,點D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點F.
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數(shù).
【答案】
(1)證明:∵AC=BC,
∴∠B=∠BAC,
∵∠ACE=∠B+∠BAC,
∴∠BAC= ,
∵CF平分∠ACE,
∴∠ACF=∠ECF= ,
∴∠BAC=∠ACF,
∴CF∥AB;
(2)解:∵∠BAC=∠ACF,∠B=∠BAC,∠ADF=∠B,
∴∠ACF=∠ADF,
∵∠ADF+∠CAD+∠AGD=180°,∠ACF+∠F+∠CGF=180°,
又∵∠AGD=∠CGF,
∴∠F=∠CAD=20°
【解析】(1)根據(jù)三角形的性質(zhì)得到∠B=∠BAC,由三角形外角的性質(zhì)得到∠ACE=∠B+∠BAC,求得∠BAC= ,由角平分線的定義得到∠ACF=∠ECF= ,等量代換得到∠BAC=∠ACF,根據(jù)平行線的判定定理即可得到結(jié)論;(2)由等量代換得到∠ACF=∠ADF,根據(jù)三角形的內(nèi)角和得到∠ADF+∠CAD+∠AGD=180°,∠ACF+∠F+∠CGF=180°,由于∠AGD=∠CGF,即可得到結(jié)論.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的有( )
①對角線互相平分的四邊形是平行四邊形;
②平行四邊形的對角互補;
③平行線間的線段相等;
④兩個全等的三角形可以拼成一個平行四邊形;
⑤平行四邊形的四內(nèi)角之比可以是2:3:2:3.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正數(shù)范圍內(nèi)定義運算“※”,其規(guī)則為a※b=a+b2 , 則方程x※(x+1)=5的解是( )
A.x=5
B.x=1
C.x1=1,x2=﹣4
D.x1=﹣1,x2=4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個飼養(yǎng)場里的雞的只數(shù)與豬的頭數(shù)之和是70,雞、豬的腿數(shù)之和是196,設(shè)雞的只數(shù)是x , 依題意列方程為( )
A.2x+4(70-x)=196
B.2x+4×70=196
C.4x+2(70-x)=196
D.4x+2×70=196
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強學生環(huán)保意識,某中學組織全校2000名學生參加環(huán)保知識大賽,比賽成績均為整數(shù),從中抽取部分同學的成績進行統(tǒng)計,并繪制成如圖統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)若抽取的成績用扇形圖來描述,則表示“第三組(79.5~89.5)”的扇形的圓心角為 度;
(2)若成績在90分以上(含90分)的同學可以獲獎,請估計該校約有多少名同學獲獎?
(3)某班準備從成績最好的4名同學(男、女各2名)中隨機選取2名同學去社區(qū)進行環(huán)保宣傳,則選出的同學恰好是1男1女的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級兩個班,各選派10名學生參加學校舉行的“漢字聽寫”大賽預(yù)賽.各參賽選手的成績?nèi)鐖D:
九(1)班:88,91,92,93,93,93,94,98,98,100
九(2)班:89,93,93,93,95,96,96,98,98,99
通過整理,得到數(shù)據(jù)分析表如下:
(1)直接寫出表中m、n的值;
(2)依據(jù)數(shù)據(jù)分析表,有人說:“最高分在(1)班,(1)班的成績比(2)班好”,但也有人說(2)班的成績要好,請給出兩條支持九(2)班成績好的理由;
(3)若從兩班的參賽選手中選四名同學參加決賽,其中兩個班的第一名直接進入決賽,另外兩個名額在四個“98分”的學生中任選二個,試求另外兩個決賽名額落在同一個班的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點P(﹣2,3)與點Q關(guān)于原點對稱,則點Q的坐標為( )
A.(﹣2,﹣3)
B.(3,﹣2)
C.(2,3)
D.(2,﹣3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列4個三角形中,均有AB=AC,則經(jīng)過三角形的一個頂點的一條直線能夠?qū)⑦@個三角形分成兩個小等腰三角形的是( )
A.①③
B.①②④
C.①③④
D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com