【題目】如圖,在一面與地面垂直的圍墻的同側有一根高10米的旗桿AB和一根高度未知的電線桿CD,它們都與地面垂直,為了測得電線桿的高度,一個小組的同學進行了如下測量:某一時刻,在太陽光照射下,旗桿落在圍墻上的影子EF的長度為2米,落在地面上的影子BF的長為10米,而電線桿落在圍墻上的影子GH的長度為3米,落在地面上的影子DH的長為5米,依據(jù)這些數(shù)據(jù),該小組的同學計算出了電線桿的高度.
(1)該小組的同學在這里利用的是 投影的有關知識進行計算的;
(2)試計算出電線桿的高度,并寫出計算的過程.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,當PC+PD最小時,點P的坐標為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°,BE=1,折疊后,點C落在AD邊上的C1處,并且點B落在EC1邊上的B1處.則EC的長為( 。
A. B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校獎勵學生,初一獲獎學生中,有一人獲獎品3件,其余每人獲獎品7件;初二獲獎學生中,有一人獲獎品4件,其余每人獲獎品9件.如果兩個年級獲獎人數(shù)不等,但獎品數(shù)目相等,且每個年級獎品數(shù)大于50而不超過100,那么兩個年級獲獎學生共有_____人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連接CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①當AE= cm時,四邊形CEDF是矩形;
②當AE= cm時,四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿EF折疊后.點D與點B重合,點C落在點C′的位置上.若∠1=60°,AE=1.
(1)求∠2、∠3的度數(shù);
(2)求長方形紙片ABCD的面積S.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC=,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向A點勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連接DE、EF.
(1)AC的長是 ,AB的長是 .
(2)在D、E的運動過程中,線段EF與AD的關系是否發(fā)生變化?若不變化,那么線段EF與AD是何關系,并給予證明;若變化,請說明理由.
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABO中,斜邊AB=1.若OC∥BA,∠AOC=36°,則( )
A.點B到AO的距離為sin54°
B.點B到AO的距離為tan36°
C.點A到OC的距離為sin36°sin54°
D.點A到OC的距離為cos36°sin54°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將直線y=3x+1向下平移1個單位長度,得到直線y=3x +m,若反比例函數(shù)的圖象與直線y=3x+m相交于點A,且點A 的縱坐標是3.
(1)求m和k的值;
(2) 直接寫出方程的解:
(3) 結合圖象求不等式的解集
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com