【題目】在中,,現(xiàn)將折疊,使點(diǎn)、兩點(diǎn)重合,折痕所在的直線與直線的夾角為,則的大小為__________度.
【答案】或
【解析】
首先根據(jù)題意畫出圖形,如圖1,如圖1:由翻折的性質(zhì)可知:EF⊥AB,所以∠A+∠AFE=90°,從而可求得∠A=40°,然后根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可求得∠B=70°;如圖2;由翻折的性質(zhì)可知:EF⊥AB,∠D+∠DAE=90°,故此∠DAE=40°,然后由等腰三角形的性質(zhì)和三角形的外角的性質(zhì)可求得∠B=20°.
如圖1:
由翻折的性質(zhì)可知:EF⊥AB,
∴∠A+∠AFE=90°.
∴∠A=90°-50°=40°,
∵AB=AC,
∴∠B=∠C.
∴∠B=×(180°-∠A)=×(180°40°)=70°;
如圖2;由翻折的性質(zhì)可知:EF⊥AB,
∴∠D+∠DAE=90°.
∴∠DAE=90°-50°=40°,
∵AB=AC,
∴∠B=∠C.
∵∠B+∠C=∠DAE,
∴∠B=∠DAE=×40°=20°.
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】蘇科版《數(shù)學(xué)》八年級(jí)上冊(cè)第35頁(yè)第2題,介紹了應(yīng)用構(gòu)造全等三角形的方法測(cè)量了池塘兩端A、B兩點(diǎn)的距離.星期天,愛動(dòng)腦筋的小剛同學(xué)用下面的方法也能夠測(cè)量出家門前池塘兩端A、B兩點(diǎn)的距離.他是這樣做的:
選定一個(gè)點(diǎn)P,連接PA、PB,在PM上取一點(diǎn)C,恰好有PA=14m,PB=13m,PC=5m,BC=12m,他立即確定池塘兩端A、B兩點(diǎn)的距離為15m.
小剛同學(xué)測(cè)量的結(jié)果正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5,M,N分別是射線OA和OB上的動(dòng)點(diǎn),若△PMN周長(zhǎng)的最小值為5,則∠AOB的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC是邊長(zhǎng)為3cm等邊三角形,動(dòng)點(diǎn)P、Q分別同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),點(diǎn)P速度為1cm/s,點(diǎn)Q的速度為2cm/s,當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),
⑴當(dāng)t為何值時(shí),△PBQ是直角三角形?
⑵△PBQ能否成為等邊三角形?若能,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:如果一個(gè)三角形的三個(gè)角分別等于另一個(gè)三角形的三個(gè)角,那么稱這兩個(gè)三角形互為“等角三角形”.從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原來(lái)三角形是“等角三角形”,我們把這條線段叫做這個(gè)三角形的“等角分割線”.
(1)如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,請(qǐng)寫出圖中兩對(duì)“等角三角形”.
(2)如圖2,在△ABC中,CD為角平分線,∠A=40°,∠B=60°。求證:CD為△ABC的等角分割線.
(3)在△ABC中,∠A=42°,CD是△ABC的等角分割線,若△ACD是等腰三角形,請(qǐng)直接寫出∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有A、B兩個(gè)港口,水由A流向B,水流的速度是4千米/小時(shí),甲、乙兩船同時(shí)由A順流駛向B,各自不停地在A、B之間往返航行,甲在靜水中的速度是28千米/小時(shí),乙在靜水中的速度是20千米/小時(shí).
設(shè)甲行駛的時(shí)間為t小時(shí),甲船距B港口的距離為S1千米,乙船距B港口的距離為S2千米,如圖為S1(千米)和t(小時(shí))函數(shù)關(guān)系的部分圖象.
(1)A、B兩港口距離是_____千米.
(2)在圖中畫出乙船從出發(fā)到第一次返回A港口這段時(shí)間內(nèi),S2(千米)和t(小時(shí))的函數(shù)關(guān)系的圖象.
(3)求甲、乙兩船第二次(不算開始時(shí)甲、乙在A處的那一次)相遇點(diǎn)M位于A、B港口的什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一條筆直公路BD的正上方A處有一探測(cè)儀,AD=24m,∠D=90°,一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°.
(Ⅰ)求B,C兩點(diǎn)間的距離(結(jié)果精確到1m);
(Ⅱ)若規(guī)定該路段的速度不得超過(guò)15m/s,判斷此轎車是否超速.
參考數(shù)據(jù):tan31°≈0.6,tan50°≈1.2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形BEFG的邊BG在正方形ABCD的邊BC上,連結(jié)AG,EC.
(1)說(shuō)出AG與CE的大小關(guān)系;
(2)圖中是否存在通過(guò)旋轉(zhuǎn)能夠相互重合的兩個(gè)三角形?若存在,請(qǐng)?jiān)敿?xì)寫出旋轉(zhuǎn)過(guò)程;若不存在,請(qǐng)說(shuō)明理由.
(3)請(qǐng)你延長(zhǎng)AG交CE于點(diǎn)M,判斷AM與CE的位置關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;
(3)過(guò)原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com