【題目】如圖,拋物線y=ax2-6ax+6(a≠0)與x軸交于點(diǎn)A(8,0),與y軸交于點(diǎn)B,在X軸上有一動(dòng)點(diǎn)E(m,0)(0<m<8),過(guò)點(diǎn)E作x軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)P,過(guò)點(diǎn)P作PM⊥AB于點(diǎn)M.
()分別求出直線AB和拋物線的函數(shù)表達(dá)式;
()設(shè)△PMN的面積為S1,△AEN的面積為S2,若S1:S2=36:25,求m的值;
()如圖2,在()條件下,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE',旋轉(zhuǎn)角為α(0°<α<90°),連接E'A、E'B.
①在x軸上找一點(diǎn)Q,使△OQE'∽△OE'A,并求出Q點(diǎn)的坐標(biāo);
②求BE'+AE'的最小值.
【答案】(1); ;(2)4;(3)①,②.
【解析】分析:(1)把點(diǎn)A(8,0)代入拋物線y=ax-6ax+6,可求得a的值,從而可得到拋物線的解析式,然后求得點(diǎn)A和點(diǎn)B的坐標(biāo),最后利用待定系數(shù)法可求得直線AB的解析式;
(2)E(m,0),則N(m,-m+6),P(m, +6),然后證明△ANE∽△ABO,依據(jù)相似三角形的性質(zhì)可求得AN的長(zhǎng),接下來(lái),再證明△NMP∽△NEA,然后依據(jù)相似三角形的性質(zhì)可得到,從而可求得PM=12-m,然后依據(jù)PM=m+3m,然后列出關(guān)于m的方程求解即可;
(3)①在(2)的條件下,m=4,則OE′=OE=4,然后再證明△OQE′∽△OE′A,依據(jù)相似三角形的性質(zhì)可得到,從而可求得OQ的值,于是可得到點(diǎn)Q的坐標(biāo);
②由①可知,當(dāng)Q為(2,0)時(shí),△OQE′∽△OE′A,且相似比為,于是得到BE′+AE′=BE′+QE′,當(dāng)點(diǎn)B、Q、E′在一條直線上時(shí),BE′+QE′最小,最小值為BQ的長(zhǎng).
本題解析:
()把點(diǎn)代入拋物線
得,
∴, ,
∴與軸交點(diǎn),令,
得,
∴.
設(shè)為過(guò), ,
∴,
∴.
()∵過(guò)作軸垂線交于,交拋物線于,
∵,
∴, ,
∵,
∴,
∴,∴,
∴,
∵,
∴,
又∵,
∴,
∵,
∴,∴,
∵,
∴
,
,
,
, ,
∵,
∴.
()①在()的條件下, ,∴,
設(shè),∵旋轉(zhuǎn),∴,
若,
則,
∵,
∴,
∴,∴,
∴.
②由①可知,當(dāng)為時(shí),
,且相似比為,
∴,
∴,
∴當(dāng)旋轉(zhuǎn)到所在直線上時(shí), 最小,即為長(zhǎng)度,
∵, ,
∴,
∴的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).
(1)求反比例函數(shù)的關(guān)系式;
(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且△ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè),比賽結(jié)束后隨機(jī)抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分.
組別 | 正確字?jǐn)?shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息解決下列問(wèn)題:
(1)在統(tǒng)計(jì)表中,m= ,n= ,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)扇形統(tǒng)計(jì)圖中“C組”所對(duì)應(yīng)的圓心角的度數(shù)是 .
(3)若該校共有900名學(xué)生,如果聽寫正確的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC⊥BC,BD⊥AD,AC 與BD 交于O,AC=BD.
求證:(1)BC=AD;
(2)△OAB是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A點(diǎn)坐標(biāo)為(5,0),直線y=kx+b(b>0)與y軸交于點(diǎn)B,∠BCA=60°,連接AB,∠α=105°,則直線y=kx+b的表達(dá)式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了增強(qiáng)環(huán)境保護(hù)意識(shí),在環(huán)保局工作人員指導(dǎo)下,若干名“環(huán)保小衛(wèi)士” 組成了“控制噪聲污染”課題學(xué)習(xí)研究小組.在“世界環(huán)境日”當(dāng)天,該小組抽樣 調(diào)查了全市 40 個(gè)噪聲測(cè)量點(diǎn)在某時(shí)刻的噪聲聲級(jí)(單位:dB),將調(diào)查的數(shù)據(jù)進(jìn)行
處理(設(shè)所測(cè)數(shù)據(jù)均為正整數(shù)),得頻數(shù)分布表如下:
組別 | 噪聲聲級(jí)分組 | 頻數(shù) | 頻率 |
1 | 44.5~59.5 | 4 | 0.1 |
2 | 59.5~74.5 | a | 0.2 |
3 | 74.5~89.5 | 10 | 0.25 |
4 | 89.5~104.5 | b | c |
5 | 104.5~119.5 | 6 | 0.15 |
合計(jì) | 40 | 1.00 |
根據(jù)表中提供的信息解答下列問(wèn)題:
(1)頻數(shù)分布表中的a= , b= , c= ;
(2)補(bǔ)充完整頻數(shù)分布直方圖;
(3)如果全市共有 300 個(gè)測(cè)量點(diǎn),那么在這一時(shí)刻噪聲聲級(jí)小于 75dB 的測(cè)量點(diǎn)約有多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人同時(shí)從家出發(fā),勻速騎共享單車到達(dá)公園入口,然后一同勻速步行到達(dá)驛站,到達(dá)驛站后小明的爸爸立即又騎共享單車按照來(lái)時(shí)騎行速度原路返回,在公園入口處改為步行,并按來(lái)時(shí)步行速度原路回家,小明到達(dá)驛站后逗留了10分鐘之后騎車回家,爸爸在鍛煉過(guò)程中離出發(fā)地的路程與出發(fā)的時(shí)間的函數(shù)關(guān)系如圖.
(1)圖中m=_____,n=_____;(直接寫出結(jié)果)
(2)小明若要在爸爸到家之前趕上,問(wèn)小明回家騎行速度至少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是邊長(zhǎng)為3的等邊三角形,點(diǎn)D是邊BC上的一點(diǎn),且BD=1,以AD為邊作等邊△ADE,過(guò)點(diǎn)E作EF∥BC,交AC于點(diǎn)F,連接BF,則下列結(jié)論中①△ABD≌△BCF;②四邊形BDEF是平行四邊形;③S四邊形BDEF=;④S△AEF=.其中正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com