【題目】如圖,在△ABC中,CDAB,垂足為D,點EBC上,EFAB,垂足為F

(1)CDEF平行嗎?為什么?

(2)如果∠1=2,且∠3=120°,求∠ACB的度數(shù).

【答案】(1)CDEF,理由見解析;(2)∠ACB=120°.

【解析】

1)根據(jù)垂直定義得出∠EFB=CDB=90°,根據(jù)平行線的判定得出即可;
2)根據(jù)平行線的性質(zhì)和已知求出∠1=2=DCB,推出DGBC,根據(jù)平行線的性質(zhì)得出即可.

1CDEF

理由是:∵CDAB,EFAB,

∴∠EFB=∠CDB90°

CDEF;

2)∵CDEF

∴∠2=∠DCB,

∵∠1=∠2

∴∠1=∠DCB,

DGBC,

∴∠ACB=∠3,

∵∠3120°,

∴∠ACB120°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,EAB上一點,FAD延長線上一點,且DFBE.易證:CECF

1)在圖1中,若GAD上,且∠GCE45°.試猜想GE,BE,GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.

2)運用(1)中解答所積累的經(jīng)驗和知識,完成下面兩題:

①如圖2,在四邊形ABCD中∠B=∠D90°,BCCD,點E,點G分別是AB邊,AD邊上的動點.若∠BCDα,∠ECGβ,試探索當αβ滿足什么關(guān)系時,圖1GE,BE,GD三線段之間的關(guān)系仍然成立,并說明理由.

②在平面直角坐標中,邊長為1的正方形OABC的兩頂點A,C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABCO點順時針旋轉(zhuǎn),當A點第一次落在直線yx上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線yx于點M,BC邊交x軸于點N(如圖3).設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?若不變,請直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,AE平分∠BAD交邊BCE,DFAE,交邊BCF,若AD10,EF4,則AB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)的圖象交軸、軸分別于兩點,交直線。

1)求點的坐標;

2)若,求的值;

3)在(2)的條件下,是線段上一點,軸于,交,若,求點的坐標。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D是BC邊上的點(不與點B、C重合),連結(jié)AD.

問題引入:

(1)如圖,當點D是BC邊上的中點時,SABD:SABC=   ;當點D是BC邊上任意一點時,SABD:SABC=   (用圖中已有線段表示).

探索研究:

(2)如圖,在ABC中,O點是線段AD上一點(不與點A、D重合),連結(jié)BO、CO,試猜想SBOC與SABC之比應(yīng)該等于圖中哪兩條線段之比,并說明理由.

拓展應(yīng)用:

(3)如圖,O是線段AD上一點(不與點A、D重合),連結(jié)BO并延長交AC于點F,連結(jié)CO并延長交AB于點E,試猜想的值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個.隨機抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.

組別

正確字數(shù)x

人數(shù)

A

0x8

10

B

8x16

15

C

16x24

25

D

24x32

m

E

32x40

n

根據(jù)以上信息完成下列問題:

1)統(tǒng)計表中的m  ,n  ,并補全條形統(tǒng)計圖;

2)扇形統(tǒng)計圖中“C組”所對應(yīng)的圓心角的度數(shù)是 

3)已知該校共有900名學(xué)生,如果聽寫正確的字的個數(shù)少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在邊BC上以每秒1個單位長的速度由點C向點B運動.

(1)當t為何值時,四邊形PODB是平行四邊形?

(2)在線段PB上是否存在一點Q,使得ODQP為菱形?若存在,求t的值;若不存在,請說明理由;

(3)OPD為等腰三角形時,寫出點P的坐標(不必寫過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校團委為積極參與陶行知杯.全國書法大賽現(xiàn)場決賽,向?qū)W校學(xué)生征集書畫作品,今年3月份舉行了書畫比賽初賽,初賽成績評定為A,B,C,DE五個等級.該校七年級書法班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題

(1)該校七年級書法班共有 名學(xué)生扇形統(tǒng)計圖中C等級所對應(yīng)扇形的圓心角等于 ,并補全條形統(tǒng)計圖;

(2)A等級的4名學(xué)生中有2名男生,2名女生,現(xiàn)從中任意選取2名學(xué)生參加陶行知杯.全國書法大賽現(xiàn)場決賽,請你用列表法或畫樹狀圖的方法求出恰好選到1名男生和1名女生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰ABC中,AB=AC,∠BAC=120°,ADBCD,點PBA延長線上一點,點O是線段AD上一點,OP=OC,

1)求∠APO+DCO的度數(shù);

2)求證:AC=AO+AP.

查看答案和解析>>

同步練習(xí)冊答案