如圖矩形ABCD的對角線AC、BD相交于點O,E、F分別是OA、OB的中點.

(1)

求證:△ADE≌△BCF;

(2)

若AD=4cm,AB=8cm,求CF的長.

答案:
解析:

(1)

如圖答所示,證明:∵四邊形ABCD為矩形,∴AD=BC,OA=OC,OB=OD,AC=BD,AD∥BC,∴OA=OB=OC,∠DAE=∠OCB.∴∠OCB=∠OBC,∴∠DAE=∠CBF.又∵,∴AE=BF,∴△ADE≌△BCF.

(2)

解:過點F作FG⊥CD于點G,則∠DGF=90°∵∠DCB=90°,∴∠DGF=∠DCB,又∵∠FDG=∠BDC,∴△DFG∽△DBC,∴.由(1)可知DF=2FB,得.∴,∴FG=3,DG=6,∴GC=DC-DG=8-6=2.∴在Rt△FGC中,


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖矩形ABCD中BC=8,AB=4,將矩形紙片沿對角線對折,使C點落在F處,BC與AD邊交于點E,則下列四個結(jié)論中:
①BE=DE,②∠ABE=30°,③AE=3,④S△DEF:S△BED=3:5.
正確的是
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD.
(1)在圖中作出△CDB沿對角線BD所在直線對折后的△C′DB,C點的對應(yīng)點為C′(用尺規(guī)作圖,保留作圖痕跡,簡要寫明作法,不要求證明);
(2)設(shè)C′B與AD的交點為E.
①若DC=3cm,BC=6cm,求△BED的面積;
②若△BED的面積是矩形ABCD的面積的
1
3
,求
DC
BC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某研究性學(xué)習(xí)小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞著矩形ABCD(AB<BC)的對角線交點O旋轉(zhuǎn)(如圖①→②→③),圖中M、N分別為直角三角板的直角邊與矩形ABCD的邊CD、BC的交點.

(1)該學(xué)習(xí)小組中一名成員意外地發(fā)現(xiàn):在圖①(三角板的一直角邊與OD重合)中,BN2=CD2+CN2;在圖③(三角板的一直角邊與OC重合)中,CN2=BN2+CD2.請你對這名成員在圖①和圖③中發(fā)現(xiàn)的結(jié)論選擇其一說明理由.
(2)試探究圖②中BN、CN、CM、DM這四條線段之間的關(guān)系,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖矩形ABCD中BC=8,AB=4,將矩形紙片沿對角線對折,使C點落在F處,BC與AD邊交于點E,則下列四個結(jié)論中:
①BE=DE,②∠ABE=30°,③AE=3,④S△DEF:S△BED=3:5.
正確的是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年安徽省淮南市潘集區(qū)九年級(下)第七次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•潘集區(qū)模擬)如圖矩形ABCD中BC=8,AB=4,將矩形紙片沿對角線對折,使C點落在F處,BC與AD邊交于點E,則下列四個結(jié)論中:
①BE=DE,②∠ABE=30°,③AE=3,④S△DEF:S△BED=3:5.
正確的是   

查看答案和解析>>

同步練習(xí)冊答案