【題目】如圖,已知拋物線與x交于A(﹣1,0)、E(3,0)兩點,與y軸交于點B(0,3).

(1)求拋物線的解析式;
(2)設(shè)拋物線頂點為D,求四邊形AEDB的面積.

【答案】
(1)

解:設(shè)拋物線的解析式為:y=a(x+1)(x﹣3),則有:

a(0+1)(0﹣3)=3,a=﹣1;

∴拋物線的解析式為:y=﹣x2+2x+3


(2)

解:由(1)知:y=﹣x2+2x+3=﹣(x﹣1)2+4,

即D(1,4);

過D作DF⊥x軸于F;

S四邊形AEDB=SAOB+SDEF+S梯形BOFD= ×1×3+ ×2×4+ ×(3+4)×1=9;

即四邊形AEDB的面積為9.


【解析】(1)已知了拋物線圖象上的三點坐標(biāo),可用待定系數(shù)法求出拋物線的解析式;(2)根據(jù)拋物線的解析式,易求得拋物線頂點D的坐標(biāo);過D作DF⊥x軸于F,那么四邊形AEDB的面積就可以由△AOB、△DEF、梯形BOFD的面積和求得.
【考點精析】認(rèn)真審題,首先需要了解二次函數(shù)的圖象(二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點),還要掌握二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y= x和直線y=﹣x+3所夾銳角為α,則sinα的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一圓柱形輸水管的橫截面,陰影部分為有水部分,如果水面寬8cm,水的最大深度為2cm,求該輸水管的半徑是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ABCD相交于O點,OE⊥AB∠1=55°,則∠BOD=  度;若OF平分∠DOB,則∠EOF的度數(shù)是  度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校開展的小制作評比活動中,二年級六個班都參加了比賽,根據(jù)他們上交作品的件數(shù),繪制直方圖如右.已知從左至右各長方形高的比為2∶3∶4∶2∶3∶1,小制作件數(shù)最多的三班上交了16.經(jīng)評選各班獲獎件數(shù)如下表:

在這次評選中,獲獎率最高的兩個班級依次是( ).

A. 5班、3 B. 3班、4 C. 5班、6 D. 6班、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AOB是一條直線,∠1=2,3=4,AOFBOF=90°.

(1)AOC的補(bǔ)角是_____;

(2)____是∠AOC的余角;

(3)COF的補(bǔ)角是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C90°,∠A、∠B、∠C的對邊分別為a、b、c

(1)a∶b3∶4c75cm,求ab;

(2)a∶c15∶17,b24,求△ABC的面積;

(3)ca4b16,求ac;

(4)∠A30°,c24,求c邊上的高hc;

(5)a、b、c為連續(xù)整數(shù),求abc

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.
(1)請直接寫出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:扇形DOE的圓心角為直角,它的半徑為2cm,正方形OABC內(nèi)接于扇形,點A、B、C分別在OE、 、OD上,過E作EF⊥OE交CB的延長線于F,則圖中陰影部分的面積為cm2

查看答案和解析>>

同步練習(xí)冊答案