【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線(xiàn)ACBD相交于點(diǎn)O,∠MPN為直角,使點(diǎn)P與點(diǎn)O重合,直角邊PM,PN分別與OA,OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM,PN分別交AB,BCEF兩點(diǎn),連接EFOB于點(diǎn)G,則下列結(jié)論:①EFOE;②S四邊形OEBFS正方形ABCD=1:4;③BE+BFOA;④在旋轉(zhuǎn)過(guò)程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE;⑤OGBDAE2+CF2.其中結(jié)論正確的個(gè)數(shù)是( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

【答案】C

【解析】

①由四邊形是正方形,直角,易證得(ASA),則可證得結(jié)論;

②由①易證得,則可證得結(jié)論;

,故可得結(jié)論;

④首先設(shè),則,,繼而表示出的面積之和,然后利用二次函數(shù)的最值問(wèn)題,求得答案;

易證得,然后由相似三角形的對(duì)應(yīng)邊成比例,證得,再利用的關(guān)系,的關(guān)系,即可證得結(jié)論.

四邊形是正方形,

,,

,

,

,

中,

,

(ASA),

,,

,故正確;

,故正確;

,故正確;

④過(guò)點(diǎn),

,

,

設(shè),則,

,

,

當(dāng)時(shí),最大;

即在旋轉(zhuǎn)過(guò)程中,當(dāng)的面積之和最大時(shí),,故錯(cuò)誤;

,

,

,

,

,,

,

中,,

,故正確.

故選.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】垃圾的分類(lèi)處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門(mén)為了提高宜傳實(shí)效,抽樣調(diào)查了部分居民小區(qū)一段時(shí)間內(nèi)生活垃圾的分類(lèi)情況,將獲得的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

(注;A為可回收物,B為廚佘垃圾,C為有害垃圾,D為其它垃圾)

根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

1)在這次抽樣調(diào)查中,一共有   噸的生活垃圾;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)扇形統(tǒng)計(jì)圖中,D所對(duì)應(yīng)的圓心角度數(shù)是   

4)假設(shè)該城市每月產(chǎn)生的生活垃圾為5000噸,且全部分類(lèi)處理,請(qǐng)估計(jì)每月產(chǎn)生的有害垃圾多少?lài)崳?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.

(1)請(qǐng)直接寫(xiě)出二次函數(shù)y=ax2+x+c的表達(dá)式;

(2)判斷△ABC的形狀,并說(shuō)明理由;

(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)寫(xiě)出此時(shí)點(diǎn)N的坐標(biāo);

(4)如圖2,若點(diǎn)N在線(xiàn)段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過(guò)點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,連接BD.

(1)如圖1,AE⊥BD于E.直接寫(xiě)出∠BAE的度數(shù).

(2)如圖1,在(1)的條件下,將△AEB以A旋轉(zhuǎn)中心,沿逆時(shí)針?lè)较蛐D(zhuǎn)30°后得到△AB′E′,AB′與BD交于M,AE′的延長(zhǎng)線(xiàn)與BD交于N.

①依題意補(bǔ)全圖1;

②用等式表示線(xiàn)段BM、DN和MN之間的數(shù)量關(guān)系,并證明.

(3)如圖2,E、F是邊BC、CD上的點(diǎn),△CEF周長(zhǎng)是正方形ABCD周長(zhǎng)的一半,AE、AF分別與BD交于M、N,寫(xiě)出判斷線(xiàn)段BM、DN、MN之間數(shù)量關(guān)系的思路.(不必寫(xiě)出完整推理過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉辦朗誦比賽,比賽結(jié)束后,對(duì)學(xué)生的成績(jī)進(jìn)行了統(tǒng)計(jì).繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

1)參加這次比賽的人數(shù)為 ,圖①中的值為 ;

2)求統(tǒng)計(jì)的這組學(xué)生朗誦比賽成績(jī)數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開(kāi)展了社團(tuán)活動(dòng),分別設(shè)置了體育類(lèi)、藝術(shù)類(lèi)、文學(xué)類(lèi)及其它類(lèi)社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛(ài)哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,完成下列問(wèn)題:

(1)此次共調(diào)查了多少人?

(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(4)若該校有1500名學(xué)生,請(qǐng)估計(jì)喜歡體育類(lèi)社團(tuán)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市在創(chuàng)建全國(guó)文明城市過(guò)程中,決定購(gòu)買(mǎi)A,B兩種樹(shù)苗對(duì)某路段道路進(jìn)行綠化改造,已知購(gòu)買(mǎi)A種樹(shù)苗8棵,B種樹(shù)苗3棵,需要950元;若購(gòu)買(mǎi)A種樹(shù)苗5棵,B種樹(shù)苗6棵,則需要800元.

1)求購(gòu)買(mǎi)A,B兩種樹(shù)苗每棵各需多少元?

2)考慮到綠化效果和資金周轉(zhuǎn),購(gòu)進(jìn)A種樹(shù)苗不能少于48棵,且用于購(gòu)買(mǎi)這兩種樹(shù)的資金不能超過(guò)7500元,若購(gòu)進(jìn)這兩種樹(shù)苗共100棵,則有哪幾種購(gòu)買(mǎi)方案?

3)某包工隊(duì)承包種植任務(wù),若種好一棵A種樹(shù)苗可獲工錢(qián)30元,種好一棵B種樹(shù)苗可獲工錢(qián)20元,在第(2)問(wèn)的各種購(gòu)買(mǎi)方案中,種好這100棵樹(shù)苗,哪一種購(gòu)買(mǎi)方案所付的種植工錢(qián)最少?最少工錢(qián)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在中,延長(zhǎng)到點(diǎn),延長(zhǎng)到點(diǎn),使得,連接,分別交,于點(diǎn),,連接

(1)求證:;

(2)連接,若,則四邊形是什么特殊四邊形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線(xiàn)段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60得到線(xiàn)段AQ,連接BQ,若PA=3,PB=4,PC=5,則四邊形APBQ的面積為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案