如圖,已知扇形OAB的圓心角為60°,半徑為1,將它沿著箭頭所示方向無滑動滾動到O′A′B′位置時,求點O到O′所經(jīng)過的路徑的長.
分析:點O到O′所經(jīng)過的路徑分三個部分,第一部分為以點B為圓心,BO為半徑,圓心角為90的;第二部分為以點O為圓心,OB為半徑,圓心角為60的;第三部分為以點A′為圓心,A′O′為半徑,圓心角為90的弧;然后根據(jù)弧長公式進行計算.
解答:解:點O到O′所經(jīng)過的路徑的長=2×
90•π•1
180
+
60•π•1
180
=
4
3
π.
點評:本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了弧長公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、選做題(請從A.B兩題中選做一題即可)
A題:在平面內(nèi)確定四個點,連接每兩點,使任意三點構(gòu)成等腰三角形(包括等邊三角形),且每兩點之間的線段長只有兩個數(shù)值.舉例如下:圖中相等的線段AB=BC=CD=DA,AC=BE.
請你畫出滿足題目條件的三個圖形,并指出每個圖形中相等的線段.
B題:如圖,已知扇形OAB的圓心角為90°,點C和點D是AB的三等分點,半徑OC、OD分別和弦AB交于E、F.請找出圖中除扇形半徑以外的所有相等的線段,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知扇形OAB的圓心角為90°,半徑為4厘米,求用這個扇形卷成的圓錐的高及圓錐的全面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知扇形OAB的圓心角為72°,半徑為10,將它沿著箭頭所示的方向無滑動滾動到扇形O′A′B′位置時,則點O到點O′所經(jīng)過的路徑的長為
14π
14π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知扇形OAB的圓心角為60°,半徑為1,將它沿著箭頭所示方向無滑動滾動到扇形O′A′B′位置時,點O到O′所經(jīng)過的路徑的長為(

查看答案和解析>>

同步練習冊答案