【題目】如圖,正方形 ABCD ,AE=AB,直線 DE BC 于點(diǎn) F,∠BED 的度數(shù)是( )

A. 105° B. 120° C. 135° D. 150°

【答案】C

【解析】

先設(shè)∠BAE=x°,根據(jù)正方形性質(zhì)推出 AB=AE=AD,BAD=90°,根據(jù)等腰三角形性質(zhì)和三角形的內(nèi)角和定理求出∠AEB 和∠AED 的度數(shù).

解:設(shè)∠BAE=x°,

∵四邊形 ABCD 是正方形,

∴∠BAD=90°,AB=AD,

∵AE=AB,

∴AB=AE=AD,

∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,

∴∠DAE=90°﹣x°

∴∠AED=∠ADE= (180°﹣∠DAE)= [180°﹣(90°﹣x°)]=45°+ x°,

∴∠BED=90°﹣x°+45°+ x°=135°.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)O,ABC:BAD=1:2,BEAC,CEBD.

1求tanDBC的值;

2求證:四邊形OBEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某測(cè)量隊(duì)在山腳A處測(cè)得山上樹頂仰角為45°(如圖),測(cè)量隊(duì)在山坡上前進(jìn)600米到D處,再測(cè)得樹頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為( 。ň_到1米, =1.732).

A. 585 B. 1014 C. 805 D. 820

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的OAC于點(diǎn)D,點(diǎn)EBC的中點(diǎn),連接DE

(1)求證:DEO的切線;

(2)求證:4DE2CDAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】熱氣球的探測(cè)器顯示,從熱氣球底部A處看一棟高樓頂部的俯角為30°,看這棟樓底部的俯角為60°,熱氣球A處與地面距離為420米,求這棟樓的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某校在推進(jìn)新課改的過程中,開設(shè)的體育選修課有:A:籃球,B:足球,C:排球,D:羽毛球,E:乒乓球,學(xué)生可根據(jù)自己的愛好選修易門,學(xué)校李老師對(duì)某班全班同學(xué)的選課情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖).

1)請(qǐng)你求出該班的總?cè)藬?shù),并補(bǔ)全頻數(shù)分布直方圖;

2)該班班委4人中,1人選修籃球,2人選修足球,1人選修排球,李老師要從這4人中人選2人了解他們對(duì)體育選修課的看法,請(qǐng)你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修籃球,1人選修足球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的頂點(diǎn)坐標(biāo)分別為A(﹣4,5),B(﹣5,2),C(﹣3,4)

(1)畫出與ABC關(guān)于原點(diǎn)O對(duì)稱的A1B1C1,并寫出點(diǎn)A1的坐標(biāo)為   ;

(2)Dx軸上一點(diǎn),使DB+DC的值最小,畫出點(diǎn)D(保留畫圖痕跡);

(3)Pt,0)是x軸上的動(dòng)點(diǎn),將點(diǎn)C繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°至點(diǎn)E,直線y=﹣2x+5經(jīng)過點(diǎn)E,則t的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月國(guó)際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場(chǎng)調(diào)研:蝙蝠型風(fēng)箏進(jìn)價(jià)每個(gè)為10元,當(dāng)售價(jià)每個(gè)為12元時(shí),銷售量為180個(gè),若售價(jià)每提高1元,銷售量就會(huì)減少10個(gè),請(qǐng)回答以下問題:

(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷售量y(個(gè))與售價(jià)x(元)之間的函數(shù)關(guān)系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時(shí)獲得840元利潤(rùn),售價(jià)應(yīng)定為多少?

(3)當(dāng)售價(jià)定為多少時(shí),王大伯獲得利潤(rùn)W最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某隧道洞的內(nèi)部截面頂部是拋物線形,現(xiàn)測(cè)得地面寬 AB=10m,隧道頂點(diǎn)O到地面AB的距離為5m,

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,幵求該拋物線的解析式;

(2)一輛小轎車長(zhǎng) 4.5米,寬2米,高1.5米,同樣大小的小轎車通過該隧道,最多能有 幾輛車幵行?

查看答案和解析>>

同步練習(xí)冊(cè)答案