【題目】(1)操作發(fā)現(xiàn):如圖①,D是等邊ABC的邊BA上一動點(D與點B不重合),連接DC,以DC為邊在BC上方作等邊DCF,連接AF,你能發(fā)現(xiàn)AFBD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論;

(2)類比猜想:如圖②,當動點D運動至等邊ABCBA的延長線時,其他作法與(1)相同,猜想AFBD(1)中的結(jié)論是否仍然成立?

(3)深入探究:Ⅰ.如圖③,當動點D在等邊ABCBA上運動時(DB不重合),連接DC,以DC為邊在BC上方和下方分別作等邊DCF和等邊DCF′,連接AF,BF′,探究AF,BF′AB有何數(shù)量關(guān)系?并證明你的探究的結(jié)論;Ⅱ.如圖④,當動點D在等邊ABC的邊BA的延長線上運動時,其他作法與圖③相同,Ⅰ中的結(jié)論是否成立?若不成立,是否有新的結(jié)論?并證明你得出的結(jié)論.

【答案】(1)AF=BD;證明見解析;(2)成立,證明見解析;(3)Ⅰ.AF+BF′=AB;證明見解析;Ⅱ.Ⅰ中的結(jié)論不成立.新的結(jié)論是AF=AB+BF′;證明見解析.

【解析】解:(1AF=BD。證明如下:

∵△ABC是等邊三角形(已知),∴BC=AC,∠BCA=60°(等邊三角形的性質(zhì))。

同理知,DC=CF,∠DCF=60°。

∴∠BCA﹣∠DCA=∠DCF﹣DCA,即∠BCD=∠ACF。

△BCD△ACF中,∵BC=AC,∠BCD=∠ACF,DC=CF,

∴△BCD≌△ACFSAS)。∴BD=AF(全等三角形的對應邊相等)。

2AF=BD仍然成立。

3AF+BF′=AB。證明如下:

由(1)知,△BCD≌△ACFSAS),則BD=AF。

同理△BCF′≌△ACDSAS),則BF′=AD。

∴AF+BF′=BD+AD=AB。

中的結(jié)論不成立,新的結(jié)論是AF=AB+BF′。證明如下:

△BCF′△ACD中,∵BC=AC,∠BC F′=∠ACD,F′C=DC,

∴△BCF′≌△ACDSAS)。∴BF′=AD(全等三角形的對應邊相等)。

又由(2)知,AF=BD∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′。

1)根據(jù)等邊三角形的三條邊、三個內(nèi)角都相等的性質(zhì),利用全等三角形的判定定理SAS可以證得△BCD≌△ACF;然后由全等三角形的對應邊相等知AF=BD。

2)通過證明△BCD≌△ACF,即可證明AF=BD。

3AF+BF′=AB;利用全等三角形△BCD≌△ACFSAS)的對應邊BD=AF;同理△BCF′≌△ACDSAS),則BF′=AD,所以AF+BF′=AB。

中的結(jié)論不成立,新的結(jié)論是AF=AB+BF′:通過證明△BCF′≌△ACDSAS),則BF′=AD(全等三角形的對應邊相等),再結(jié)合(2)中的結(jié)論即可證得AF=AB+BF′

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,A,B,C三點的坐標分別為(﹣6,7)、(﹣3,0)、(0,3).

(1)畫出△ABC,并求△ABC的面積;在△ABC中,點C經(jīng)過平移后的對應點為C′(5,4),將△ABC作同樣的平移得到△A′B′C′,畫出平移后的△A′B′C′,并寫出點A′,B′的坐標;
(2)P(﹣3,m)為△ABC中一點,將點P向右平移4個單位后,再向上平移6個單位得到點Q(n,﹣3),則m= , n=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC,∠A是銳角,那么ABC(  )

A. 銳角三角形 B. 直角三角形 C. 鈍角三角形 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若函數(shù)y=k+3x|k|2+4是一次函數(shù),則函數(shù)解析式是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】截至2020423日,全球新型冠狀病毒肺炎累計確診人數(shù)超過2550000人,這個數(shù)據(jù)用科學計數(shù)法表示為(

A.2.55×106B.25.5×105C.2.55×107D.0.255×107

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求下列各式中x的值.
(1)(x﹣3)2﹣4=21
(2)64x3﹣27=0
(3)125(x+1)3=8.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若∠A與∠B互為余角,∠A=40°,則∠B=(  )

A.140°B.40°C.50°D.60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將拋物線y=x22x1先向上平移3個單位長度,再向左平移2個單位長度,所得的拋物線的解析式是(  )

A.y=(x+1)2+1B.y=(x3)2+1C.y=(x3)25D.y=(x+1)2+2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:xy3x=_____

查看答案和解析>>

同步練習冊答案