【題目】如圖所示的正方形網(wǎng)格中,△ABC 的頂點均在格點上,請在所給直角坐標系中按要求畫圖和解答下列問題:
(1)以A點為旋轉中心,將△ABC繞點A順時針旋轉90°得△AB1C1,畫出△AB1C1.
(2)作出△ABC關于坐標原點O成中心對稱的△A2B2C2.
(3)作出點C關于x軸的對稱點P. 若點P向右平移x個單位長度后落在△A2B2C2的內部(不含落在△A2B2C2的邊上),請直接寫出x的取值范圍..
(提醒:每個小正方形邊長為1個單位長度)
【答案】⑴作圖見解析;(2)作圖見解析;(3)5.5<x<8
【解析】(1)利用網(wǎng)格特點和旋轉的性質畫出B、C的對應點B1、C1,則可得到△AB1C1;
(2)根據(jù)關于原點對稱的點的坐標特征寫出A2、B2、C2的坐標,然后描點即可得到△A2B2C2;
(3)利用關于x軸的對稱點的坐標特征寫出P點坐標,再描點得到P點,然后觀察圖形可判斷x的取值范圍.
解:(1)如圖,△AB1C1為所作;
(2)如圖,△A2B2C2為所作;
(3)如圖,點P為所作;x的取值范圍為5.5<x<8.
“點睛”本題考查了作圖-旋轉變換:根據(jù)旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形,也考查了平移變換.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AE、BF是角平分線,它們相交于點O,AD是高,∠BAC=54°,∠C=66°,求∠DAC、∠BOA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小李做摸球實驗,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù)m | 63 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.63 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請估計:當實驗次數(shù)為10000次時,摸到白球的頻率將會接近 ;(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(摸到白球)= ;
(3)如何通過增加或減少這個不透明盒子內球的具體數(shù)量,使得在這個盒子里每次摸到白球的概率為0.5?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2+ax﹣1=0的根的情況是( 。
A. 沒有實數(shù)根 B. 只有一個實數(shù)根
C. 有兩個相等的實數(shù)根 D. 有兩個不相等的實數(shù)根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知BA平分∠EBC, CD平分∠ACF,且∥CD,
(1)試判斷AC與BE的位置關系,并說明理由;
(2)若DC⊥EC于C, 猜想∠E與∠FCD之間的關系,并推理判斷你的猜想。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)給出下列四個命題:
①等邊三角形既是軸對稱圖形,又是中心對稱圖形;②相似三角形的面積比等于它們的相似比;
③菱形的面積等于兩條對角線的積;④三角形的三個內角中至少有一內角不小于60°.
其中不正確的命題的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com