【題目】計算下列各題
(1)計算: +( 2﹣4cos45°;
(2)化簡:(x+2)2﹣x(x﹣3)

【答案】
(1)解:原式=2 +4﹣4×

=2 +4﹣2

=4;


(2)解:原式=x2+4x+4﹣x2+3x

=7x+4


【解析】(1)原式第一項化為最簡二次根式,第二項利用負指數(shù)冪法則計算,第三項利用特殊角的三角函數(shù)值計算即可得到結果;(2)原式第一項利用完全平方公式展開,第二項利用單項式乘以多項式法則計算即可得到結果.
【考點精析】利用整數(shù)指數(shù)冪的運算性質和特殊角的三角函數(shù)值對題目進行判斷即可得到答案,需要熟知aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于點O,AE=CF.

(1)求證:△BOE≌△DOF;

(2)連接DE,BF,若BD⊥EF,試探究四邊形EBFD的形狀,并對結論給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】霧霾天氣已經(jīng)成為人們普遍關注的話題,霧霾不僅僅影響人們的出行,還影響著人們的健康,太原市會持續(xù)出現(xiàn)霧霾天氣嗎?在2016年2月周末休息期間,某校九年級1班綜合實踐小組的同學以“霧霾天氣的主要成因”為主題,隨機調查了太原市部分市民的觀點,并對調查結果進行了整理,繪制了如下不完整的統(tǒng)計圖表,觀察并回答下列問題:

類別

霧霾天氣的主要成因

百分比

A

工業(yè)污染

45%

B

汽車尾氣排放

m

C

城中村燃煤問題

15%

D

其他(綠化不足等)

n


(1)請你求出本次被調查市民的人數(shù)及m,n的值,并補全條形統(tǒng)計圖;
(2)若太原市有300萬人口,請你估計持有A,B兩類看法的市民共有多少人?
(3)學校要求小穎同學在A,B,C,D這四個霧霾天氣的主要成因中,隨機抽取兩項作為課題研究的項目進行考察分析,請用畫樹狀圖或列表的方法,求出小穎同學剛好抽到B(汽車尾氣排放),C(城中村燃煤問題)的概率.(用A,B,C,D表示各項目)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一”小長假,小穎和小梅兩家計劃從“北京天安門”“三亞南山”“內(nèi)蒙古大草原”三個景區(qū)中任意選擇一景區(qū)游玩,小穎和小梅制作了如下三張質地大小完全相同的卡片,背面朝上洗勻后各自從中抽去一張來確定游玩景區(qū)(第一人抽完放回洗勻后另一人再抽去),則兩人抽到同一景區(qū)的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,∠DCE=118°,∠AEC的角平分線EF與GF相交于點F,∠BGF=132°,則∠F的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.

(1)當直線MN繞點C旋轉到圖1的位置時,求證:DE=AD+BE;

(2)當直線MN繞點C旋轉到圖2的位置時,求證:DE=AD-BE;

(3)當直線MN繞點C旋轉到圖3的位置時,試問DE、AD、BE具有怎樣的等量關系?請直接寫出這個等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀與思考 婆羅摩笈多(Brahmagupta),是一位印度數(shù)學家和天文學家,書寫了兩部關于數(shù)學和天文學的書籍,他的一些數(shù)學成就在世界數(shù)學史上有較高的地位,他的負數(shù)概念及加減法運算僅晚于中國《九章算術》,而他的負數(shù)乘除法法則在全世界都是領先的,他還提出了著名的婆羅摩笈多定理,該定理的內(nèi)容及部分證明過程如下:
已知:如圖1,四邊形ABCD內(nèi)接于⊙O,對角線AC⊥BD于點P,PM⊥AB于點M,延長MP交CD于點N,求證:CN=DN.
證明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,
∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.
∴∠BAP=∠BPM.
∵∠DPN=∠BPM,∠BAP=∠BDC.
∴…

(1)請你閱讀婆羅摩笈多定理的證明過程,完成剩余的證明部分.
(2)已知:如圖2,△ABC內(nèi)接于⊙O,∠B=30°,∠ACB=45°,AB=2,點D在⊙O上,∠BCD=60°,連接AD,與BC交于點P,作PM⊥AB于點M,延長MP交CD于點N,則PN的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知當x1=a,x2=b,x3=c時,二次函數(shù)y= x2+mx對應的函數(shù)值分別為y1 , y2 , y3 , 若正整數(shù)a,b,c恰好是一個三角形的三邊長,且當a<b<c時,都有y1<y2<y3 , 則實數(shù)m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列做法正確的是(  )

A. 方程=1+去分母,2(2x-1)=1+3(x-3)

B. 方程4x=7x-8移項,4x-7x=8

C. 方程3(5x-1)-2(2x-3)=7去括號,15x-3-4x-6=7

D. 方程1-x=3x+移項,-x-3x=-1

查看答案和解析>>

同步練習冊答案