【題目】操作發(fā)現(xiàn):
(1)數(shù)學(xué)活動(dòng)課上,小明將已知△ABO(如圖1)繞點(diǎn)O旋轉(zhuǎn)180°得到△CDO(如圖2).小明發(fā)現(xiàn)線段AB與CD有特殊的關(guān)系,請(qǐng)你寫出:線段AB與CD的關(guān)系是 .
(2)連結(jié)AD(如圖3),觀察圖形,試說明AB+AD>2AO.
(3)連結(jié)BC(如圖4),觀察圖形,直接寫出圖中全等的三角形:
(寫出三對(duì)即可) .
【答案】(1)AB=CD,AB//CD;(2)證明見解析;(3)ΔABOΔCDO,ΔADOΔCBO,ΔABCΔCDA,ΔABDΔCDB
【解析】(1)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)即可得出結(jié)論;
(2)根據(jù)三角形三邊不等關(guān)系得AD+CD>AC,再由旋轉(zhuǎn)的性質(zhì)得AC=2AO,從而得出結(jié)論;
(3)根據(jù)三角形全等的判定條件可得出結(jié)論.
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得:ΔABOΔCDO,
∴AB=CD,∠ABO=∠CDO,
∴AB//CD,
故線段AB與CD的關(guān)系是:AB=CD,AB//CD;
(2)在ΔACD中,AD+CD>AC
又因?yàn)?/span>AB=CD,AO=OC
所以AB+AD>2AO
(3)ΔABOΔCDO,ΔADOΔCBO,ΔABCΔCDA,ΔABDΔCDB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列因式分解,正確的是( )
A. x2y2-z2=x2(y+z)(y-z) B. -x2y+4xy-5y=-y(x2+4x+5)
C. (x+2)2-9=(x+5)(x-1) D. 9-12a+4a2=-(3-2a)2
【答案】C
【解析】解析:選項(xiàng)A.用平方差公式法,應(yīng)為x2y2-z2=(xy+z)·(xy-z),故本選項(xiàng)錯(cuò)誤.
選項(xiàng)B.用提公因式法,應(yīng)為-x2y+ 4xy-5y=- y(x2- 4x+5),故本選項(xiàng)錯(cuò)誤.
選項(xiàng)C.用平方差公式法,(x+2)2-9=(x+2+3)(x+2-3)=(x+5)(x-1),故本選項(xiàng)正確.
選項(xiàng)D.用完全平方公式法,應(yīng)為9-12a+4a2=(3-2a)2,故本選項(xiàng)錯(cuò)誤.
故選C.
點(diǎn)睛:(1)完全平方公式: .
(2)平方差公式:(a+b)(a-b)= .
(3)常用等價(jià)變形:
,
,
.
【題型】單選題
【結(jié)束】
10
【題目】已知a,b,c分別是△ABC的三邊長,且滿足2a4+2b4+c4=2a2c2+2b2c2,則△ABC是( )
A. 等腰三角形 B. 等腰直角三角形
C. 直角三角形 D. 等腰三角形或直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2-4x+2)(x2-4x+6)+4因式分解的過程.
解:設(shè)x2-4x=y,
則原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
解答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的方法是( )
A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)因式分解的結(jié)果是否徹底?(填“徹底”或“不徹底”).若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果;
(3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
【答案】(1)C;(2)不徹底,(x-2)4;(3)(x-1)4.
【解析】試題分析:(1)從二步到第三步運(yùn)用了完全平方和公式;(2)x2-4x+4可運(yùn)用完全平方差公式因式分解;(3)設(shè)x2-2x=y,將(x2-2x)(x2-2x+2)+1變形成y(y+2)+1的形式,再進(jìn)行因式分解;
試題解析:
(1)運(yùn)用了C,兩數(shù)和的完全平方公式;
(2)不徹底;
(x2-4x+4)2=(x-2)4
(3)設(shè)x2-2x=y.
(x2-2x)(x2-2x+2)+1
=y(y+2)+1
=y2+2y+1
=(y+1)2…………………………7分
=(x2-2x+1)2
=(x-1)4.
【題型】解答題
【結(jié)束】
24
【題目】乘法公式的探究及應(yīng)用.
探究問題
圖1是一張長方形紙條,將其剪成長短兩條后剛好能拼成圖2.
(1) (2)
(1)圖1中長方形紙條的面積可表示為_______(寫成多項(xiàng)式乘法的形式).
(2)拼成的圖2陰影部分的面積可表示為________(寫成兩數(shù)平方差的形式).
(3)比較兩圖陰影部分的面積,可以得到乘法公式:____.
結(jié)論運(yùn)用
(4)運(yùn)用所得的公式計(jì)算:
=________; =________.
拓展運(yùn)用:
(5)計(jì)算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于點(diǎn)P.若四邊形ABCD的面積是18,則DP的長是( )
A. 3 B. 2 C. 3 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥BD 于點(diǎn) , 是 AB 上一點(diǎn),FD 交 AC 于點(diǎn) E,∠B 與 ∠D 互余.
(1)試說明:∠A=∠D;
(2)若 AE=1,AC=CD=2.5,求 BD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸正半軸上,點(diǎn)B的坐標(biāo)是(5,2),點(diǎn)P是CB邊上一動(dòng)點(diǎn)(不與點(diǎn)C、點(diǎn)B重合),連結(jié)OP、AP,過點(diǎn)O作射線OE交AP的延長線于點(diǎn)E,交CB邊于點(diǎn)M,且∠AOP=∠COM,令CP=x,MP=y.
(1)當(dāng)x為何值時(shí),OP⊥AP?
(2)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中,是否存在x,使△OCM的面積與△ABP的面積之和等于△EMP的面積?若存在,請(qǐng)求x的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長線與BC的延長線交于點(diǎn)F,連接CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①AE為何值時(shí)四邊形CEDF是矩形?為什么?
②AE為何值時(shí)四邊形CEDF是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,∠BAC=10°,P是 的中點(diǎn),則∠PAB的大小是( )
A.35°
B.40°
C.60°
D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長為1個(gè)單位長度.平面直角坐標(biāo)系xOy的原點(diǎn)O在格點(diǎn)上,x軸、y軸都在格線上.線段AB的兩個(gè)端點(diǎn)也在格點(diǎn)上.
(1)若將線段AB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段A1B1,試在圖中畫出線段A1B1.
(2)若線段A2B2與線段A1B1關(guān)于y軸對(duì)稱,請(qǐng)畫出線段A2B2.
(3)若點(diǎn)P是此平面直角坐標(biāo)系內(nèi)的一點(diǎn),當(dāng)點(diǎn)A、B1、B2、P四邊圍成的四邊形為平行四邊形時(shí),請(qǐng)你直接寫出點(diǎn)P的坐標(biāo)(寫出一個(gè)即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com