【題目】如圖,以AB為直徑的⊙O經(jīng)過點C,過點C作⊙O的切線交AB的延長線于點PD是⊙O上于點,且弧BC=弧CD,弦AD的延長線交切線PC于點E,連接AC

1)求∠E的度數(shù);

2)若⊙O的直徑為5sinP,求AE的長.

【答案】190°;(24

【解析】

1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠OAC=∠OCA,∠OAC=∠CAD,推出OCAE,根據(jù)平行線的性質(zhì)得到∠E=∠OCP.根據(jù)切線的性質(zhì)即可得到結(jié)論;

2)運用三角函數(shù)值在RtOCP中求得OP,然后在RtAPE中求得AE即可.

解:(1)連接OC,

OAOC,

∴∠OAC=∠OCA,

∵弧BC=弧CD,

∴∠OAC=∠CAD,

∴∠OCA=∠CAD,

OCAE

∴∠E=∠OCP,

PE是的切線,C為切點,

∴∠OCP90°

∴∠E90°;

2)在RtOCP中,OC =2.5,sinP

OP,

RtAPE中,AP+2.5sinP,

AE4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,作等邊ABC,取AC的中點D,以AD為邊向ABC形外作等邊ADE,取AE的中點G,再以EG為邊作等邊EFG,如此反復(fù),當作出第6個三角形時,若AB=4,整個圖形的外圍周長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一帶一路的戰(zhàn)略構(gòu)想為國內(nèi)許多企業(yè)的發(fā)展帶來了新的機遇,某公司生產(chǎn)A,B兩種機械設(shè)備,每臺B種設(shè)備的成本是A種設(shè)備的1.5倍,公司若投入16萬元生產(chǎn)A種設(shè)備,36萬元生產(chǎn)B種設(shè)備,則可生產(chǎn)兩種設(shè)備共10臺.請解答下列問題:

(1)A、B兩種設(shè)備每臺的成本分別是多少萬元?

(2)A,B兩種設(shè)備每臺的售價分別是6萬元,10萬元,公司決定生產(chǎn)兩種設(shè)備共60臺,計劃銷售后獲利不低于126萬元,且A種設(shè)備至少生產(chǎn)53臺,求該公司有幾種生產(chǎn)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在半徑等于5cm的圓內(nèi)有長為5cm的弦,則此弦所對的圓周角為(

A.120° B.30°或120°

C.60° D.60°或120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,點C、D在圓O上,且AD平分∠CAB.過點D作AC的垂線,與AC的延長線相交于E,與AB的延長線相交于點F.

求證:EF與圓O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校圍繞著你最喜歡的體育活動項目是什么?(只寫一項)的問題,對在校學(xué)生進行了隨機抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:

(1)該校對多少名學(xué)生進行了抽樣調(diào)查?

(2)本次抽樣調(diào)查中,最喜歡足球活動的有多少人?占被調(diào)查人數(shù)的百分比是多少?

(3)若該校九年級共有400名學(xué)生,圖2是根據(jù)各年級學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學(xué)生中最喜歡籃球活動的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半,求該客車由高速公路從甲地到乙地所需的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠A36°,BD平分∠ABCAC于點D,則下列結(jié)論中BCBDADSABDSBCDADDC;BC2CDAC;AB2,則BC1,其中正確的結(jié)論的個數(shù)是_____個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中一小島上有一個觀測點A,某天上午900觀測到某漁船在觀測點A的西南方向上的B處跟蹤魚群由南向北勻速航行.當天上午930觀測到該漁船在觀測點A的北偏西60°方向上的C處.若該漁船的速度為每小時30海里,在此航行過程中,問該漁船從B處開始航行多少小時,離觀測點A的距離最近?(計算結(jié)果用根號表示,不取近似值).

查看答案和解析>>

同步練習(xí)冊答案