【題目】綜合與實踐
問題情境:在數(shù)學活動課上,老師出示了這樣一個問題:如圖1,在矩形ABCD中,AD=2AB,E是AB延長線上一點,且BE=AB,連接DE,交BC于點M,以DE為一邊在DE的左下方作正方形DEFG,連接AM.試判斷線段AM與DE的位置關(guān)系.
探究展示:勤奮小組發(fā)現(xiàn),AM垂直平分DE,并展示了如下的證明方法:
證明:∵BE=AB,∴AE=2AB.
∵AD=2AB,∴AD=AE.
∵四邊形ABCD是矩形,∴AD∥BC.
∴.(依據(jù)1)
∵BE=AB,∴.∴EM=DM.
即AM是△ADE的DE邊上的中線,
又∵AD=AE,∴AM⊥DE.(依據(jù)2)
∴AM垂直平分DE.
反思交流:
(1)①上述證明過程中的“依據(jù)1”“依據(jù)2”分別是指什么?
②試判斷圖1中的點A是否在線段GF的垂直平分線上,請直接回答,不必證明;
(2)創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)進行探究,如圖2,連接CE,以CE為一邊在CE的左下方作正方形CEFG,發(fā)現(xiàn)點G在線段BC的垂直平分線上,請你給出證明;
探索發(fā)現(xiàn):
(3)如圖3,連接CE,以CE為一邊在CE的右上方作正方形CEFG,可以發(fā)現(xiàn)點C,點B都在線段AE的垂直平分線上,除此之外,請觀察矩形ABCD和正方形CEFG的頂點與邊,你還能發(fā)現(xiàn)哪個頂點在哪條邊的垂直平分線上,請寫出一個你發(fā)現(xiàn)的結(jié)論,并加以證明.
【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析.
【解析】
(1)①直接得出結(jié)論;
②借助問題情景即可得出結(jié)論;
(2)先判斷出∠BCE+∠BEC=90°,進而判斷出∠BEC=∠BCG,得出△GHC≌△CBE,判斷出AD=BC,進而判斷出HC=BH,即可得出結(jié)論;
(3)先判斷出四邊形BENM為矩形,進而得出∠1+∠2=90°,再判斷出∠1=∠3,得出△ENF≌△EBC,即可得出結(jié)論.
(1)①依據(jù)1:兩條直線被一組平行線所截,所得的對應線段成比例(或平行線分線段成比例).
依據(jù)2:等腰三角形頂角的平分線,底邊上的中線及底邊上的高互相重合(或等腰三角形的“三線合一”).
②答:點A在線段GF的垂直平分線上.
理由:由問題情景知,AM⊥DE,
∵四邊形DEFG是正方形,
∴DE∥FG,
∴點A在線段GF的垂直平分線上.
(2)證明:過點G作GH⊥BC于點H,
∵四邊形ABCD是矩形,點E在AB的延長線上,
∴∠CBE=∠ABC=∠GHC=90°,
∴∠BCE+∠BEC=90°.
∵四邊形CEFG為正方形,
∴CG=CE,∠GCE=90°,
∴∠BCE+∠BCG=90°.
∴∠2BEC=∠BCG.
∴△GHC≌△CBE.
∴HC=BE,
∵四邊形ABCD是矩形,
∴AD=BC.
∵AD=2AB,BE=AB,
∴BC=2BE=2HC,
∴HC=BH.
∴GH垂直平分BC.
∴點G在BC的垂直平分線上.
(3)答:點F在BC邊的垂直平分線上(或點F在AD邊的垂直平分線上).
過點F作FM⊥BC于點M,過點E作EN⊥FM于點N.
∴∠BMN=∠ENM=∠ENF=90°.
∵四邊形ABCD是矩形,點E在AB的延長線上,
∴∠CBE=∠ABC=90°,
∴四邊形BENM為矩形.
∴BM=EN,∠BEN=90°.
∴∠1+∠2=90°.
∵四邊形CEFG為正方形,
∴EF=EC,∠CEF=90°.
∴∠2+∠3=90°.
∴∠1=∠3.
∵∠CBE=∠ENF=90°,
∴△ENF≌△EBC.
∴NE=BE.∴BM=BE.
∵四邊形ABCD是矩形,
∴AD=BC.
∵AD=2AB,AB=BE.
∴BC=2BM.
∴BM=MC.
∴FM垂直平分BC.
∴點F在BC邊的垂直平分線上.
科目:初中數(shù)學 來源: 題型:
【題目】為了弘揚優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“兩個黃鸝鳴翠柳”.
(1)小明回答該問題時,對第二個字是選“個”還是選“只”難以抉擇,若隨機選擇其中一個,則小明回答正確的概率是__________;
(2)小麗回答該問題時,對第二個字是選“個”還是選“只”、第五個字是選“鳴”還是選“明”都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,交BF于點C,BD平分∠ABC,交AE于點D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若AB=5,AC=6,求AE,BF之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過點,與軸負半軸交于點,與軸交于點,且.
(1)求拋物線的解析式;
(2)點在軸上,且,求點的坐標;
(3)點在拋物線上,點在拋物線的對稱軸上,是否存在以點,,,為頂點的四邊形是平行四邊形?若存在。求出所有符合條件的點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P在∠MON的角平分線上,過點P作OP的垂線交OM,ON于C、D,PA⊥OM.PB⊥ON,垂足分別為A、B,EP∥BD,則下列結(jié)論錯誤的是( )
A.CP=PDB.PA=PBC.PE=OED.OB=CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠CAB=90°,F(xiàn)是AB邊上一點,作射線CF,過點B作BG⊥CF于點G,連接AG.
(1)求證:∠ABG=∠ACF;
(2)用等式表示線段CG,AG,BG之間的等量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com