分析 (1)由方程的系數(shù)結(jié)合根的判別式即可得出關(guān)于k的一元一次不等式,解之即可得出實(shí)數(shù)k的取值范圍;
(2)由根與系數(shù)的關(guān)系可得x1+x2=-(2k+1)、x1•x2=k2+1,結(jié)合x1+x2=x1•x2即可得出關(guān)于k的一元二次方程,解之即可得出k值,再根據(jù)k>$\frac{3}{4}$即可確定k的值.
解答 解:(1)∵關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=(2k+1)2-4(k2+1)=4k-3>0,
解得:k>$\frac{3}{4}$.
∴實(shí)數(shù)k的取值范圍為k>$\frac{3}{4}$.
(2)由根與系數(shù)的關(guān)系,得:x1+x2=-(2k+1),x1•x2=k2+1,
∵x1+x2=x1•x2,
∴-(2k+1)=k2+1,
方程無解.
點(diǎn)評(píng) 本題考查了根與系數(shù)的關(guān)系、根的判別式以及解一元二次方程,根據(jù)根與系數(shù)的關(guān)系得出關(guān)于k的一元二次方程是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com