【題目】在平面直角坐標系xOy中(如圖),已知拋物線經(jīng)過點和,其頂點為C.
(1)求拋物線的解析式和頂點C的坐標;
(2)我們把坐標為(n,m)的點叫做坐標為(m,n)的點的反射點,已知點M在這條拋物線上,它的反射點在拋物線的對稱軸上,求點M的坐標;
(3)點P是拋物線在第一象限部分上的一點,如果∠POA=∠ACB,求點P的坐標.
【答案】(1),頂點C的坐標為:(1,4);(2)點M的坐標為(,1)或(,1);(3)點P的坐標為(,).
【解析】
(1)將點和代入即可求出;
(2)設(shè)點M的坐標為(n,m),則其反射點的坐標為(m,n),根據(jù)點M的反射點在拋物線的對稱軸上得到m=1,即M(n,1),將點M坐標代入解析式求出n即可得到坐標;
(3)根據(jù)點和求出AB=,過點C作CM⊥y軸與M,根據(jù)C(1,4),求出CM=BM=1,推出∠ABC=90°,,設(shè)點P的坐標為(x, ),過點P作PF⊥x軸于F,則∠OFP=∠ABC=90°,證明△POF∽△CAB,列關(guān)系式求出x即可得到點P的坐標.
(1)將點和代入得
,解得,
∴=,
∴頂點C的坐標為:(1,4);
(2)設(shè)點M的坐標為(n,m),則其反射點的坐標為(m,n),
∵點M的反射點在拋物線的對稱軸上,
∴m=1,即M(n,1),
代入中,得,
∴,
∴點M的坐標為(,1)或(,1);
(3)∵點和,
∴OA=OB=3,
∴AB=,
∴∠ABO=∠BAO=45°,
過點C作CM⊥y軸與M,
∵C(1,4),
∴CM=BM=1,
∴∠CBM=∠BCM=45°,
∴∠ABC=90°,
∴,
設(shè)點P的坐標為(x, ),
過點P作PF⊥x軸于F,則∠OFP=∠ABC=90°,
∵∠POA=∠ACB,
∴△POF∽△CAB,
∴,
∴,
解得x=或x=(不合題意,舍去),
∴=,
∴點P的坐標為(,).
科目:初中數(shù)學 來源: 題型:
【題目】贛南臍橙果大形正,肉質(zhì)脆嫩,風味濃甜芳香,深受大家的喜愛.某臍橙生產(chǎn)基地生產(chǎn)的禮品盒包裝的臍橙每箱的成本為30元,按定價50元出售,每天可銷售200箱.為了增加銷量,該生產(chǎn)基地決定采取降價措施,經(jīng)市場調(diào)研,每降價1元,日銷售量可增加20箱.
(1)求出每天銷售量y(箱)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)若該生產(chǎn)基地每天要實現(xiàn)最大銷售利潤,每箱禮品盒包裝的臍橙應定價多少元?每天可實現(xiàn)的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,點是對角線上一動點,連接,作分別交于點,于點 .
(1)如圖1,若恰好平分,求證:;
(2)如圖2,若,取的中點,連接交于點 .
求證:①;②.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線與軸、軸分別交于、兩點,拋物線經(jīng)過、兩點,與軸的另一個交點為.
(1)求拋物線的解析式及點坐標;
(2)若點M為x軸下方拋物線上一動點,連接MA、MB、BC,當點M運動到某一位置時,四邊形AMBC面積最大,求此時點M的坐標及四邊形AMBC的面積;
(3)如圖2,若點是半徑為2的⊙上一動點,連接、,當點運動到某一位置時,的值最小為_________.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=30°,p是∠MON的角平分線,PQ平行ON交OM于點Q,以P為圓心半徑為4的圓ON相切,如果以Q為圓心半徑為r的圓與相交,那么r的取值范圍是( )
A.4<r<12B.2<r<12C.4<r<8D.r>4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小杰早上從家勻速步行去學校,走到途中發(fā)現(xiàn)英語書忘在家里了,隨即打電話給爸爸,爸爸立即送英語書去,小杰掉頭以原速往回走,幾分鐘后,路過一家文具店,此時還未遇到爸爸,小杰便在文具店購買了幾個筆記本,剛付完款,爸爸剛好趕到,將英語書交給了小杰(途中小杰打電話、小杰的爸爸找英語書的時間忽略不計):然后,爸爸原速返回,同時小杰把速度提高到原來的前往學校,爸爸到家后,過一會小杰才到達學校.兩人之間的距離(米)與小杰從家出發(fā)的時間(分鐘)的函數(shù)關(guān)系如圖所示,則家與學校相距______米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與軸交于、兩點(點在點的左側(cè)),與軸交于點,連接、,且點是線段的中點,連接.
(1)如圖2,點是直線上方拋物線上的一動點,在線段上有一動點,連接、、,當面積最大時,求的最小值;
(2)將過點的直線繞點旋轉(zhuǎn),設(shè)旋轉(zhuǎn)中的直線分別與直線、直線交于點、,當為等腰三角形時,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個有進水管和出水管的容器,從某時刻開始4min內(nèi)只進水不出水,在隨后的8min內(nèi)既進水又出水,每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量y(L)與時間x(min)之間的關(guān)系如圖所示,則每分鐘的進水量與出水量分別是( 。
A.5L,3.75LB.2.5L,5LC.5L,2.5LD.3.75L,5L
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關(guān)系如圖所示.
(1)求甲、乙兩車行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com